Math, asked by palsabita1957, 2 months ago

Trigeonometric Identities
Exercise 13 A
Question number 31
( 1 + tan∅ + cot∅ ) ( sin ∅ - cos ∅ ) = ( sec∅ / cosec²∅ - cosec∅ / sec²∅ )

✔Those who can give complete solved answer only they will use this answer slot .

❌Answer without my rules results to deletion of their account so be careful .❌

Answers

Answered by Anonymous
86

To Proof:-

\sf{(1 + tan\theta + cot\theta)(sin\theta - cos\theta) = \bigg(\dfrac{sec\theta}{cosec^2\theta} - \dfrac{cosec\theta}{sec^2\theta}\bigg)}

Solution:-

Taking LHS:-

(1 + tanθ + cotθ)(sinθ - cosθ)

We know:-

\dag{\boxed{\pink{\sf{tan\theta = \dfrac{sin\theta}{cos\theta}}}}}

\dag{\boxed{\pink{\sf{cot\theta = \dfrac{cos\theta}{sin\theta}}}}}

Hence,

\sf{\bigg(1 + \dfrac{sin\theta}{cos\theta} + \dfrac{cos\theta}{sin\theta}\bigg)(sin\theta - cos\theta)}

 = \sf{(sin\theta - cos\theta)\bigg(1 + \dfrac{sin\theta}{cos\theta} + \dfrac{cos\theta}{sin\theta}\bigg)}

 = \sf{sin\theta\bigg(1 + \dfrac{sin\theta}{cos\theta} + \dfrac{cos\theta}{sin\theta}\bigg) - cos\theta\bigg(1 + \dfrac{sin\theta}{cos\theta} + \dfrac{cos\theta}{sin\theta}\bigg)}

 =  \sf{ \dfrac{1}{cosec\theta} \bigg(1  + \dfrac{ \dfrac{1}{cosec \theta}}{ \dfrac{1}{sec \theta}} +  \dfrac{ \dfrac{1}{sec \theta}}{ \dfrac{1}{cosec \theta}} \bigg) -  \dfrac{1}{sec \theta} \bigg(1 +  \dfrac{ \dfrac{1}{cosec \theta}}{ \dfrac{1}{sec \theta}} +  \dfrac{ \dfrac{1}{cosec \theta}}{ \dfrac{1}{sec \theta}} \bigg)}

 = \sf{\dfrac{1}{cosec\theta}\bigg(1 + \dfrac{sec\theta}{cosec\theta} + \dfrac{cosec\theta}{sec\theta}\bigg) - \dfrac{1}{sec\theta}\bigg(1 + \dfrac{sec\theta}{cosec\theta} + \dfrac{cosec\theta}{sec\theta}\bigg)}

 =\sf{ \bigg[\dfrac{1}{cosec\theta} + \dfrac{sec\theta}{cosec^2\theta} + \dfrac{cosec\theta}{sec\theta} \times \dfrac{1}{cosec\theta}\bigg] - \bigg[\dfrac{1}{sec\theta} + \dfrac{sec\theta}{cosec\theta} \times \dfrac{1}{sec\theta} + \dfrac{cosec\theta}{sec^2\theta}\bigg]}

 = \sf{\dfrac{1}{cosec\theta} + \dfrac{sec\theta}{cosec^2\theta} + \dfrac{1}{sec\theta} - \dfrac{1}{cosec\theta} - \dfrac{cosec\theta}{sec^2\theta}}

 = \pink{\sf{\dfrac{sec\theta}{cosec^2\theta} - \dfrac{cosec\theta}{sec^2\theta}}}

Taking RHS,

= \pink{\sf{\dfrac{sec\theta}{cosec^2\theta} - \dfrac{cosec\theta}{sec^2\theta}}}

Hence,

LHS = RHS (Proved)

______________________________________

Answered by ITzUnknown100
3

Answer:

Science, any system of knowledge that is concerned with the physical world and its phenomena and that entails unbiased observations and systematic experimentation. ... In general, a science involves a pursuit of knowledge covering general truths or the operations of fundamental laws.

Didi why my relevant answers is been deleted?..

and pls talk to me di

Similar questions