Math, asked by Anonymous, 3 months ago

Trigeonometric Identities :

Exercise 5.1

Question 9
Cos x/1-sin x = 1 + cos x + sin x/ 1+ cos x- sinx
If you dont know the answer so stay away !!

Answers

Answered by XxHappiestWriterxX
74

Solution :

Let's considered RHS :

 \:  \:  \:  \:  \:  \rightarrow \tt  \large{\frac{1 +  \cos \: x +  \sin \: x }{1 +  \cos \: x -  \sin \: x } }

 \:  \:  \:  \:  \:  \:  \rightarrow \tt  \large\frac{(1 +  \cos \: x) + ( \sin \: x)  }{(1 +   \: \cos \: x) - ( \sin \: x)  }

 \tt \large \frac{(1 +  \cos \: x) + ( \sin \: x)  }{(1 +  \cos \: x) - ( \sin \: x)  }  \times  \frac{(1 +  \cos \: x) + ( \sin \: x)  }{(1 +  \cos \: x)  + ( \sin \: x) }

 \:  \:  \:  \:  \:  \:  \rightarrow \tt \large \frac{[(1 +  \cos \: x)  + ( \sin \: x)   ] {}^{2} }{(1 +  \cos \: x) {}^{2}   - ( \sin \: x) {}^{2}  }

 \:  \:  \:  \:  \:  \:  \:  \:  \large \rightarrow \tt \frac{[(1 +  \cos \: x)  + ( \sin \: x) ] {}^{2} }{(1 +  \cos \: x) {}^{2} - ( \sin \: x)   {}^{2}  }

 \tt \large \frac{(1 +  \cos \: x) {}^{2}   + ( \sin \: x) {}^{2} + 2(1 +  \cos \: x)  ( \sin \: x)  }{(1 +  \cos {}^{2}x + 2 \cos \: x  )  - ( \sin {}^{2}x ) }

 \sf \tt \frac{(1 +  \cos \: x)  {}^{2} + ( \sin \: x)  {}^{2} + 2(1 +  \cos \: x)  ( \sin \: x)  }{(1 +  \cos \:  {}^{2} x + 2 \cos \: x) - ( \sin  {}^{2} x)  }

 \tt \large \frac{(1 +  \cos \: x)  {}^{2} + ( \sin \: x) {}^{2}  + 2(1 +  \cos \: x)  ( \sin \: x)  }{(1 +  \cos  {}^{2} x + 2 \cos \: x) - ( \sin {}^{2} x)  }

 \large \tt \frac{1 +  \cos{}^{2} x + 2 \cos x + \sin {}^{2}x + 2 \sin x + 2 \sin x \: cos  \: x   }{1 +  \cos {}^{2}x + 2 \cos x - sin {}^{2}x  }

 \sf \: we \: know \:  { \sin }^{2} x +  { \cos }^{2} x = 1

 \large \tt \frac{1 + 1  + 2 \cos x + 2 \sin \: x  + 2 \sin x \cos x  }{(1 -  {sin}^{2}x) +  {cos}^{2}x + 2 \cos x   }

 \sf we \: know \: 1 -  {cos}^{2} x =  {sin}^{2}x

 \large \tt \frac{2 + 2 \cos x + 2  \: sin  \: x + 2 \:sin \: x \: cos \: x}{ {cos}^{2}x +  {cos}^{2} x + 2 \cos x }

  \large \tt\frac{2 + 2 \cos x + 2 \sin x + 2 \sin x \cos x }{2  \: {cos}^{2}x + 2  \cos \: x }

 \tt \large \frac{2 + 2 \cos x + 2 \sin x + 2  \sin x \cos x  }{ {cos}^{2}x +  {cos}^{2} x + 2  \cos x }

 \large \tt \frac{1 +  \cos x +  \sin x +  \sin x \cos x  }{ \cos x( \cos x + 1) }

 \large \tt \frac{1(1 +  \cos x) +  \sin x( \cos x + 1)  }{ \cos x( \cos x + 1)  }

 \large \tt \frac{(1 +  \sin x)( \cos x + 1)  }{ \cos x( \cos x + 1)  }

 \large \tt \frac{1 +  \sin x }{cos \: x}  \times  \frac{cos \:x}{cos \: x}

  \large \tt \frac{(1 +  \sin x)  \cos x }{ {cos}^{2} x}

 \sf \: we \: know \: 1 -  \sin {}^{2}x =  {cos}^{2}  x

 \tt \large \frac{(1 +  \sin x ) \cos x }{1 -  {sin}^{2}x }

 \tt \large \frac{(1 \:  +  \: sin \: x)cos \: x}{(1 - sin \: x)(1 + sin \: x)}

 \large \tt \frac{cos \: x}{1 - sin \: x}

 \tt= LHS

 \tt∴ LHS = RHS

 \tt \: Hence  \: Proved

Answered by Anonymous
8

Solution :

Let's considered RHS :

\: \: \: \: \: \rightarrow \tt \large{\frac{1 + \cos \: x + \sin \: x }{1 + \cos \: x - \sin \: x } }→

</p><p>\: \: \: \: \: \: \rightarrow \tt \large\frac{(1 + \cos \: x) + ( \sin \: x) }{(1 + \: \cos \: x) - ( \sin \: x) }→

\tt \large \frac{(1 + \cos \: x) + ( \sin \: x) }{(1 + \cos \: x) - ( \sin \: x) } \times \frac{(1 + \cos \: x) + ( \sin \: x) }{(1 + \cos \: x) + ( \sin \: x) }

\: \: \: \: \: \: \rightarrow \tt \large \frac{[(1 + \cos \: x) + ( \sin \: x) ] {}^{2} }{(1 + \cos \: x) {}^{2} - ( \sin \: x) {}^{2} }→

\: \: \: \: \: \: \: \: \large \rightarrow \tt \frac{[(1 + \cos \: x) + ( \sin \: x) ] {}^{2} }{(1 + \cos \: x) {}^{2} - ( \sin \: x) {}^{2} }→

\tt \large \frac{(1 + \cos \: x) {}^{2} + ( \sin \: x) {}^{2} + 2(1 + \cos \: x) ( \sin \: x) }{(1 + \cos {}^{2}x + 2 \cos \: x ) - ( \sin {}^{2}x ) }

</p><p>\sf \tt \frac{(1 + \cos \: x) {}^{2} + ( \sin \: x) {}^{2} + 2(1 + \cos \: x) ( \sin \: x) }{(1 + \cos \: {}^{2} x + 2 \cos \: x) - ( \sin {}^{2} x) }

\tt \large \frac{(1 + \cos \: x) {}^{2} + ( \sin \: x) {}^{2} + 2(1 + \cos \: x) ( \sin \: x) }{(1 + \cos {}^{2} x + 2 \cos \: x) - ( \sin {}^{2} x) }

</p><p>\large \tt \frac{1 + \cos{}^{2} x + 2 \cos x + \sin {}^{2}x + 2 \sin x + 2 \sin x \: cos \: x }{1 + \cos {}^{2}x + 2 \cos x - sin {}^{2}x }

</p><p>\sf \: we \: know \: { \sin }^{2} x + { \cos }^{2}

\large \tt \frac{1 + 1 + 2 \cos x + 2 \sin \: x + 2 \sin x \cos x }{(1 - {sin}^{2}x) + {cos}^{2}x + 2 \cos x } </p><p>

\large \tt \frac{2 + 2 \cos x + 2 \: sin \: x + 2 \:sin \: x \: cos \: x}{ {cos}^{2}x + {cos}^{2} x + 2 \cos x } </p><p>.

\tt \large \frac{2 + 2 \cos x + 2 \sin x + 2 \sin x \cos x }{ {cos}^{2}x + {cos}^{2} x + 2 \cos x }

\large \tt \frac{1 + \cos x + \sin x + \sin x \cos x }{ \cos x( \cos x + 1) }

\large \tt \frac{1(1 + \cos x) + \sin x( \cos x + 1) }{ \cos x( \cos x + 1) }

\large \tt \frac{(1 + \sin x)( \cos x + 1) }{ \cos x( \cos x + 1) }

\large \tt \frac{1 + \sin x }{cos \: x} \times \frac{cos \:x}{cos \: x}

\large \tt \frac{(1 + \sin x) \cos x }{ {cos}^{2} x}

\sf \: we \: know \: 1 - \sin {}^{2}x = {cos}^{2}

\tt \large \frac{(1 + \sin x ) \cos x }{1 - {sin}^{2}x }

\tt \large \frac{(1 \: + \: sin \: x)cos \: x}{(1 - sin \: x)(1 + sin \: x)}

\large \tt \frac{cos \: x}{1 - sin \: x}

=LHS

∴LHS=RHS

HenceProved

Similar questions