Trignomatric Identities and trignometric ratios
Answers
Answer:
Trigonometric Identities are formulas that involve Trigonometric functions. These identities are true for all values of the variables. Trigonometric Ratio is known for the relationship between the measurement of the angles and the length of the sides of the right triangle.
Answer:
P = Perpendicular
B = Base
H = Hypotenuse
sin∅ = P/H
cos∅ = B/H
tan∅ = sin∅/cos∅ = P/B
cot∅ = cos∅/sin∅ = B/P
sec∅ = 1/cos∅ = H/B
cosec∅ = 1/sin∅ = H/P
sin²∅+cos²∅ = 1
sec²-tan²∅ = 1
cosec²∅-cot²∅ = 1
sin(A+B) = sinAcosB + cosAsinB
sin(A-B) = sinAcosB - cosAsinB
cos(A+B) = cosAcosB - sinAsinB
cos(A-B) = cosAcosB + sinAsinB
∅ 0° 30° 45° 60° 90°
sin∅ 0 1/2 1/√2 √3/2 1
cos∅ 1 √3/2 1/√2 1/2 0
tan∅ 0 1/√3 1 √3 -
cot∅ - √3 1 1/√3 0
sec∅ 1 2/√3 √2 2 -
cosec∅ - 2 √2 2/√3 0