Math, asked by rajnisoni, 10 months ago

trignometery ratios of complementery angles''''.... ✨✨✨✨​

Answers

Answered by ButterFliee
7

SOLUTION:

Trigonometric ratios of complementary angles

\sf{ sin( 90^° - \theta) = cos \theta}

\sf{ cos( 90^° - \theta) = sin \theta }

\sf{ tan( 90^° - \theta) = cot \theta }

\sf{ cot( 90^° - \theta) = tan \theta}

\sf{ sec( 90^° - \theta) = cosec \theta }

\sf{ cosec( 90^° - \theta) = sec \theta }

________________

Trigonometric ratios of 0°

\sf{ sin 0^°= 0}

\sf{ cos 0^° = 1}

\sf{ tan 0^° = 0}

\sf{ cot 0^° = not\:defined}

\sf{ sec 0^° = 1}

\sf{ cosec 0^° = not\: defined}

________________

Trigonometric ratios of 30°

\sf{ sin 30^° = \frac{1}{2}}

\sf{ cos 30^° = \frac{\sqrt{3}}{2}}

\sf{ tan 30^° = \frac{1}{\sqrt{3}}}

\sf{ cot 30^° = \sqrt{3}}

\sf{ sec 30^° = \frac{2}{\sqrt{3}}}

\sf{ cosec 30^° = 2}

_________________

Trigonometric ratios of 45°

\sf{ sin 45^° = \frac{1}{\sqrt{2}}}

\sf{ cos 45^° = \frac{1}{\sqrt{2}}}

\sf{ tan 45^° = 1}

\sf{ cot 45^° = 1 }

\sf{ sec 45^° = \sqrt{2}}

\sf{ cosec 45^° = \sqrt{2}}

________________

Trigonometric ratios of 60°

\sf{ sin 60^° = \frac{\sqrt{3}}{2}}

\sf{ cos 60^° = \frac{1}{2}}

\sf{ tan 60^° = \sqrt{3}}

\sf{ cot 60^° = \frac{1}{\sqrt{3}}}

\sf{ sec 60^° = 2}

\sf{ cosec 60^° = \frac{2}{\sqrt{3}}}

________________

Trigonometric ratios of 90°

\sf{ sin 90^° = 1}

\sf{ cos 90^° = 0}

\sf{ tan 90^° = not\:defined}

\sf{ cot 90^° = 0}

\sf{ sec 90^° = not\: defined}

\sf{ cosec 90^° = 1}

________________

Trigonometric Identities

\bf\red{ sin^2 \theta + cos^2 \theta = 1}

\bf\red{ 1 + tan^2 \theta  = sec^2 \theta}

\bf\red{ 1 + cot^2 \theta  = cosec^2 \theta}

________________

________________


Anonymous: super ✌
rajnisoni: kya
Anonymous: you not
rajnisoni: ookkkkk
Answered by kk221510347
0

Answer:

In Mathematics, the complementary angles are the set of two angles such that their sum is equal to 90°. For example, 30° and 60° are complementary to each other as their sum is equal to 90°.

Sin 60∘ = Sin (90∘- 30∘) = Cos 30∘ = 3–√2

Sin 60∘ = Sin (90∘- 30∘) = Cos 30∘ = 3–√2Cos 60∘ = Cos (90∘- 30∘) = Sin 30∘ = 12

Sin 60∘ = Sin (90∘- 30∘) = Cos 30∘ = 3–√2Cos 60∘ = Cos (90∘- 30∘) = Sin 30∘ = 12Tan 60∘ = Tan (90∘- 30∘) = Cot 30∘ = 3–√1

Sin 60∘ = Sin (90∘- 30∘) = Cos 30∘ = 3–√2Cos 60∘ = Cos (90∘- 30∘) = Sin 30∘ = 12Tan 60∘ = Tan (90∘- 30∘) = Cot 30∘ = 3–√1Cosec 60∘ = Cosec (90∘- 30∘) = Sec 30∘ = 23–√

Sin 60∘ = Sin (90∘- 30∘) = Cos 30∘ = 3–√2Cos 60∘ = Cos (90∘- 30∘) = Sin 30∘ = 12Tan 60∘ = Tan (90∘- 30∘) = Cot 30∘ = 3–√1Cosec 60∘ = Cosec (90∘- 30∘) = Sec 30∘ = 23–√Sec 60∘ = Sec (90∘- 30∘) = Cosec 30∘ = 21

Sin 60∘ = Sin (90∘- 30∘) = Cos 30∘ = 3–√2Cos 60∘ = Cos (90∘- 30∘) = Sin 30∘ = 12Tan 60∘ = Tan (90∘- 30∘) = Cot 30∘ = 3–√1Cosec 60∘ = Cosec (90∘- 30∘) = Sec 30∘ = 23–√Sec 60∘ = Sec (90∘- 30∘) = Cosec 30∘ = 21Cot 60∘ = Cot (90∘- 30∘) = Tan 30∘ = 13–

Similar questions