trignometery ratios of complementery angles''''.... ✨✨✨✨
Answers
SOLUTION:
✯ Trigonometric ratios of complementary angles ✯
➾
➾
➾
➾
➾
➾
________________
✯ Trigonometric ratios of 0° ✯
➨
➨
➨
➨
➨
➨
________________
✯ Trigonometric ratios of 30° ✯
➛
➛
➛
➛
➛
➛
_________________
✯ Trigonometric ratios of 45° ✯
➧
➧
➧
➧
➧
➧
________________
✯ Trigonometric ratios of 60° ✯
➫
➫
➫
➫
➫
➫
________________
✯ Trigonometric ratios of 90° ✯
➬
➬
➬
➬
➬
➬
________________
✯ Trigonometric Identities ✯
➸
➸
➸
________________
________________
Answer:
In Mathematics, the complementary angles are the set of two angles such that their sum is equal to 90°. For example, 30° and 60° are complementary to each other as their sum is equal to 90°.
Sin 60∘ = Sin (90∘- 30∘) = Cos 30∘ = 3–√2
Sin 60∘ = Sin (90∘- 30∘) = Cos 30∘ = 3–√2Cos 60∘ = Cos (90∘- 30∘) = Sin 30∘ = 12
Sin 60∘ = Sin (90∘- 30∘) = Cos 30∘ = 3–√2Cos 60∘ = Cos (90∘- 30∘) = Sin 30∘ = 12Tan 60∘ = Tan (90∘- 30∘) = Cot 30∘ = 3–√1
Sin 60∘ = Sin (90∘- 30∘) = Cos 30∘ = 3–√2Cos 60∘ = Cos (90∘- 30∘) = Sin 30∘ = 12Tan 60∘ = Tan (90∘- 30∘) = Cot 30∘ = 3–√1Cosec 60∘ = Cosec (90∘- 30∘) = Sec 30∘ = 23–√
Sin 60∘ = Sin (90∘- 30∘) = Cos 30∘ = 3–√2Cos 60∘ = Cos (90∘- 30∘) = Sin 30∘ = 12Tan 60∘ = Tan (90∘- 30∘) = Cot 30∘ = 3–√1Cosec 60∘ = Cosec (90∘- 30∘) = Sec 30∘ = 23–√Sec 60∘ = Sec (90∘- 30∘) = Cosec 30∘ = 21
Sin 60∘ = Sin (90∘- 30∘) = Cos 30∘ = 3–√2Cos 60∘ = Cos (90∘- 30∘) = Sin 30∘ = 12Tan 60∘ = Tan (90∘- 30∘) = Cot 30∘ = 3–√1Cosec 60∘ = Cosec (90∘- 30∘) = Sec 30∘ = 23–√Sec 60∘ = Sec (90∘- 30∘) = Cosec 30∘ = 21Cot 60∘ = Cot (90∘- 30∘) = Tan 30∘ = 13–