Math, asked by sjakaka18shshsbs8, 10 months ago

TRIGNOMETRIC IDENTITES ........state all

Answers

Answered by Anonymous
18

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Huge\red{\mid{\overline{\underline{ ANSWER }}}\mid }

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{QUESTION}}

Trigonometric identities

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{ SOLUTION }}

\large\mathfrak\pink{\implies sin^2\: a + cos^2a = 1 }

\large\mathfrak\blue{\implies sec^2\: a - tan^2a = 1 }

\large\mathfrak\orange{\implies cosec^2\: a - cot^2a = 1 }

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Large\red{ THANKS \: FOR \: YOUR}

\bf\Large\red{ QUESTION \: HOPE \: IT  }

\bf\Large\red{ HELPS  }

\Large\mathcal\green{FOLLOW \: ME}

thnc

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by ÚɢʟʏÐᴜᴄᴋʟɪɴɢ1
4

Answer:

hope it's helpful ☺

Reciprocal: csc(θ) =

csc(θ) = 1/sin(θ)

Reciprocal: sec(θ) =

sec(θ) = 1/cos(θ)

Reciprocal: cot(θ) =

cot(θ) = 1/tan(θ)

Ratio: tan(θ) =

tan(θ) = sin(θ)/cos(θ)

Ratio: cot(θ) =

cot(θ) = cos(θ)/sin(θ)

Pythagorean: sin costs =

(sinθ)^2 + (cosθ)^2 = 1

Pythagorean: I tan = get sic

1 + (tanθ)^2 = (secθ)^2

Pythagorean: I cut = crescent rolls

1 + (cotθ)^2 = (cscθ)^2

Similar questions