Trignometry Challenge , let's see who does first (20 points )
if sinQ + cosQ = 1
then prove 2sinQ - cosQ °= 2
Inna:
5 point ke question par 20 points likh rakha hai
Answers
Answered by
1
sinQ+cosQ=1
we know ,
sin^2Q +cos^2Q=1
(sinQ +cosQ)^2-2sinQ.cosQ=1
1^2-2sinQ.cosQ=1
sinQ.cosQ=0
hence,
sinQ=0 or cosQ=0
again ,
sinQ-cosQ= root {(sinQ+cosQ)^2-4sinQ.cosQ}=root {(1)^2-0}= +_1
if sinQ-cosQ=1
then sinQ=1 and cosQ=0
but when sinQ-cosQ=-1
then sinQ=0 and cosQ=1
but we have given to proved
2sinQ-cosQ=2
so, here we choose only sinQ=1 and cosQ=0
now you see when sinQ=1 and cosQ=0
then 2sinQ-cosQ=2 possible.
we know ,
sin^2Q +cos^2Q=1
(sinQ +cosQ)^2-2sinQ.cosQ=1
1^2-2sinQ.cosQ=1
sinQ.cosQ=0
hence,
sinQ=0 or cosQ=0
again ,
sinQ-cosQ= root {(sinQ+cosQ)^2-4sinQ.cosQ}=root {(1)^2-0}= +_1
if sinQ-cosQ=1
then sinQ=1 and cosQ=0
but when sinQ-cosQ=-1
then sinQ=0 and cosQ=1
but we have given to proved
2sinQ-cosQ=2
so, here we choose only sinQ=1 and cosQ=0
now you see when sinQ=1 and cosQ=0
then 2sinQ-cosQ=2 possible.
Answered by
8
Given:-
sin^2Q +cos^2Q=1
(sinQ +cosQ)^2-2sinQ.cosQ=1
1^2-2sinQ.cosQ=1
sinQ.cosQ=0
Solution:-
♠sinQ=0 or cosQ=0
♠sinQ-cosQ= root {(sinQ+cosQ)^2-4sinQ.cosQ}=root {(1)^2-0}= +_1
sinQ-cosQ=1
therefore,sinQ=1 and cosQ=0
♠ when sinQ-cosQ=-1
♠sinQ=0 and cosQ=1
Proof:-
2sinQ-cosQ=2
2sinQ-cosQ=2sinQ=1 and cosQ=0
verified:-
Similar questions