Math, asked by DavidSuperior, 1 year ago

Trignometry Challenge , let's see who does first (20 points )
if sinQ + cosQ = 1
then prove 2sinQ - cosQ °= 2


Inna: 5 point ke question par 20 points likh rakha hai
DavidSuperior: galti se ho gaya fir se dalta hun , 20pounts karna bhool gaya
DavidSuperior: sorry

Answers

Answered by abhi178
1
sinQ+cosQ=1

we know ,
sin^2Q +cos^2Q=1
(sinQ +cosQ)^2-2sinQ.cosQ=1
1^2-2sinQ.cosQ=1
sinQ.cosQ=0
hence,
sinQ=0 or cosQ=0
again ,
sinQ-cosQ= root {(sinQ+cosQ)^2-4sinQ.cosQ}=root {(1)^2-0}= +_1

if sinQ-cosQ=1
then sinQ=1 and cosQ=0

but when sinQ-cosQ=-1
then sinQ=0 and cosQ=1
but we have given to proved
2sinQ-cosQ=2
so, here we choose only sinQ=1 and cosQ=0

now you see when sinQ=1 and cosQ=0
then 2sinQ-cosQ=2 possible.
Answered by AravindhPrabu2005
8

{\huge {\overbrace {\underbrace {\red{answer}}}}}

Given:-

sin^2Q +cos^2Q=1

(sinQ +cosQ)^2-2sinQ.cosQ=1

1^2-2sinQ.cosQ=1

sinQ.cosQ=0

Solution:-

♠sinQ=0 or cosQ=0

♠sinQ-cosQ= root {(sinQ+cosQ)^2-4sinQ.cosQ}=root {(1)^2-0}= +_1

sinQ-cosQ=1

therefore,sinQ=1 and cosQ=0

♠ when sinQ-cosQ=-1

♠sinQ=0 and cosQ=1

Proof:-

2sinQ-cosQ=2

2sinQ-cosQ=2sinQ=1 and cosQ=0

verified:-

\color{red}\boxed{sinQ=1}

\color{red}\boxed{cosQ=0}

\color{red}\boxed{2sinQ-codQ=2}

\color{red}{hope}\color{red}{it}\color{red}{helps}

\color{red}{please}\color{red}{mark}\color{red}{it}\color{red}{as}\color{red}{a}\color{red}{brainliest}

Similar questions