Math, asked by sanjanac029, 9 months ago

trignometry please ans Question 8th​

Attachments:

Answers

Answered by Rajshuklakld
3

Simply take LHS

LHS=2 { \sec }^{2} \alpha  -  {sec}^{4} \alpha  - 2 {cosec}^{2} \alpha  +  { \csc }^{4} \alpha

now put , {sec}^{2} \alpha  = 1 +  {tan}^{2} \alpha then we getLHS as 2(1 +  {tan}^{2} \alpha )  -   ({1 +  {tan}^{2} \alpha  })^{2} -  \\ 2( {1 +  {cot}^{2}  \alpha })^{2}  + ( {1 +  { \cot }^{2}  \alpha })^{2}   \\  = 2 + 2 {tan}^{2} \alpha  - 1 -  {tan}^{4} \alpha  - 2 {tan}^{2} \alpha  \\  - 2 -  2{cot}^{2}  \alpha  + 1 +  {cot}^{4}   \alpha + 2 {cot}^{2} \alpha  \\  =  {cot}^{4} \alpha -  {tan}^{4} \alpha  \\

now,convert cot terms into tan

  \frac{1}{ {tan}^{4} } -  {tan}^{4}   \alpha \ = \  \frac{1 -  {tan}^{8} }{ {tan}^{4} }

which eqauls to RHS

Hence LHS=RHS

Similar questions