Math, asked by avinashmurmu99311, 9 months ago

Trignometry pls solve it​

Attachments:

Answers

Answered by Milika
0

RHS

( sec^2A -1)/ (sec A -1 )^2

(sec A )^2 - (1)^2 / (Sec A -1)^2

(Sec A +1 ) × ( sec A -1 ) / (Sec A -1 ) × (sec A -1)

(sec A + 1 ) / ( sec A - 1)

( 1 + cos A ) / ( 1 - cos A )

Answered by tahseen619
2

Step-by-step explanation:

{\underline{{\text{To Prove:}}}}

 \dfrac{1 +  \cos }{1 -  \cos}  =  \dfrac{ { \tan}^{2} }{( { \sec - 1)}^{2} }

{\underline{{\text{Solution:}}}}

L.H.S

 \dfrac{1 +  \cos }{1 -  \cos}   \\  \\  =  \frac{ 1 +  \cos }{1 -  \frac{1}{ \sec } }  \\  \\   = \frac{1 +  \cos}{ \frac{ \sec - 1 }{  \sec} }  \\  \\  =  \frac{(1 +  \cos) \sec }{ \sec  - 1}  \\  \\  =  \frac{ (\sec +  \cos. \sec) }{( \sec - 1)}    \:  \:  \:   [ \text{using\: i}]  \\  \\  =   \frac{ (\sec +  1) ( \sec - 1)}{( \sec - 1)( \sec - 1)}    \\  \\  \frac{ { \sec}^{2}  -  {1}^{2} }{ { (\sec   - 1)}^{2} }   \:  \: [ \text{using(a+b)(a-b)}   =  {a}^{2}  -  {b}^{2}   ] \\  \\  \frac{ \tan {}^{2} }{ { (\sec   - 1)}^{2}  }  \:  \:  [ \text{using  ii} ]  \:  \\  \\ \therefore \text{L.H.S = R.H.S [Proved]}

{{\boxed{ \text{\blue{Some important trigonometry Rules}}}}}

 sin \theta . cosec \theta = 1 \\ \\</p><p>\cos \theta. \sec\theta = 1.......[ \text{i}] \\ \\</p><p>\tan\theta . \cot\theta = 1\\ \\</p><p>\sin^2\theta+ \cos^2 \theta= 1 \\ \\</p><p>\cosec^2 \theta -\cot^2 \theta = 1 \\ \\</p><p>\sec^2 \theta - \tan^2 \theta = 1......[\text{ii}]

Similar questions