Math, asked by UniQueSoul, 9 months ago

Trignometry question Prove that \sf\sqrt{1+\sin\:A}{1-\sin\:A}=\sec\:A+\tan\:A Quality answer needed.

Answers

Answered by SarcasticL0ve
137

Correct Question:-

Trignometry question

Prove that \sf \sqrt{ \dfrac{ 1 + sin\;A}{1 - sin\;A}} = sec\;A + tan\;A Quality answer needed.

To prove:-

  • \sf \sqrt{ \dfrac{ 1 + sin\;A}{1 - sin\;A}} = sec\;A + tan\;A

Proof:-

\small\sf\;\;\dag\; \underline{Taking\;LHS:-}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{ \dfrac{ 1 + sin\;A}{1 - sin\;A}}

⠀⠀⠀⠀⠀⠀⠀

\small\sf\;\;\dag\; \underline{Rationalize\;the\; denominator:-}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{ \dfrac{ 1 + sin\;A}{1 - sin\;A} \times \dfrac{ 1 + sin\;A}{1 + sin\;A}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{ \dfrac{ 1 + sin\;A}{1 - sin\;A} \; \dfrac{ 1 + sin\;A}{1 + sin\;A}}

⠀⠀⠀⠀⠀⠀⠀

✮ As we know the identity,

⠀⠀⠀⠀⠀⠀⠀

{\underline{\boxed{\bf{\red{x^2 - y^2 = (x - y)(x + y)}}}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{ \dfrac{(1 + sin\;A)^2}{1^2 - sin^2\;A}}

⠀⠀⠀⠀⠀⠀⠀

✮ Here, we use the Trigonometric identity -

⠀⠀⠀⠀⠀⠀⠀

{\underline{\boxed{\bf{\purple{cos^2\;A = 1 - sin^2\;A}}}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{ \bigg( \dfrac{1 + sin\;A}{cos\;A} \bigg) }

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{1 + sin\;A}{cos\;A}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{1}{cos\;A} + \dfrac{sin\;A}{cos\;A}

⠀⠀⠀⠀⠀⠀⠀

As we know that,

⠀⠀⠀⠀⠀⠀⠀

\sf \dfrac{1}{cos\;A} = sec\;A

⠀⠀⠀⠀⠀⠀⠀

And

⠀⠀⠀⠀⠀⠀⠀

\sf \dfrac{sin\;A}{cos\;A} = tan\;A

⠀⠀⠀⠀⠀⠀⠀

Therefore,

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{1}{cos\;A} + \dfrac{sin\;A}{cos\;A}

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\bf{\blue{sec\;A + tan\;A}}}}}

⠀⠀⠀⠀⠀⠀⠀

\dag\sf \underline{Hence,\;LHS = RHS}

▬▬▬▬▬▬▬▬▬▬

Additional Information:-

\begin{lgathered}\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\cos^2\theta=1-\sin^2\theta \\ \\ 4)1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5) \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\sec^2\theta=1+\tan^2\theta \\ \\ 8)\sec^2\theta-\tan^2\thetha=1 \\ \\ 9)\tan^2\theta=\sec^2\theta-1$\end{minipage}}\end{lgathered}


Anonymous: Awesome ♡
BloomingBud: nice
Anonymous: Nice
Answered by Anonymous
52

Correct Question :

Prove that

\sf\sqrt{\dfrac{1+\sin\:A}{1-\sin\:A}}=\sec\:A+\tan\:A

Solution :

We have to prove that

\sf\sqrt{\dfrac{1+\sin\:A}{1-\sin\:A}}=\sec\:A+\tan\:A

LHS

\sf=\sqrt{\dfrac{1+\sin\:A}{1-\sin\:A}}

\sf=\sqrt{\dfrac{1+\sin\:A}{1-\sin\:A}\times\dfrac{1+\sin\:A}{1+\sin\:A}}

\sf=\sqrt{\dfrac{(1+\sin\:A)^2}{1^2-\sin^2A}}

We know that sin² x+cos² x=1

\sf=\sqrt{\dfrac{(1+\sin\:A)^2}{cos^2A}}

\sf=\dfrac{(1+\sin\:A)}{cosA}

RHS

\sf=\sec\:A+\tan\:A

\sf=\dfrac{1}{\cos\:A}+\dfrac{\sin\:A}{\cos\:A}

\sf=\dfrac{1+\sin\:A}{\cos\:A}

Now , LHS = RHS

Hence Proved

\rule{200}2

Trignometric Formulas :

sinA cos B + sinB cosA = sin( A+ B)

sinAcosB - sinBcosA =sin(A-B)

cosAcosB -sinAsinB=cos( A+B)

cosAcosB+sinAsinB =cos(A-B)

sin²A + cos²A = 1

sec²A - tan²A = 1

cosec²A - cot²A = 1

sin2A = 2 sinA cosA

cos2A = cos²A - sin²A

tan2A = 2 tanA / (1 - tan²A)


Anonymous: Awesomeee ♡
BloomingBud: :p
BloomingBud: good
Anonymous: Thankies ❤️
Anonymous: Nice one
Anonymous: Thanks
Similar questions