Math, asked by avinashmurmu99311, 10 months ago

trignometry solve it fast​

Attachments:

Answers

Answered by Anonymous
25

Given Expression:

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\dfrac{1\:-\:SinA}{1\:+\:SinA}\:=\:(SecA\:-\:TanA)^2}

⠀⠀⠀⠀⠀⠀⠀

SoluTion:

⠀⠀⠀⠀⠀⠀⠀

Taking RHS,

⠀⠀⠀⠀⠀⠀⠀

Changing TanA and SecA in Sin and Cos.

⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf{(\dfrac{1}{CosA}\:-\:\dfrac{SinA}{CosA})^2}

⠀⠀⠀⠀⠀⠀⠀

Taking LCM,

⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf{(\dfrac{1\:-\:SinA}{CosA})^2}

⠀⠀⠀⠀⠀⠀⠀

Separating the squares,

⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf{\dfrac{(1\:-\:SinA)^2}{Cos^{2} A}}

⠀⠀⠀⠀⠀⠀⠀

We know that,

⠀⠀⠀⠀⠀⠀⠀

\large{\boxed{\rm{\green{Cos^{2}\:A\:=\:1\:-\:Sin^2\:A}}}}

⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf{\dfrac{(1\:-\:SinA)(1\:-\:SinA)}{1\:-\:Sin^2\:A}}

⠀⠀⠀⠀⠀⠀⠀

We also know that,

⠀⠀⠀⠀⠀⠀⠀

\large{\boxed{\rm{\red{(\:a^2\:-\:b^2\:)\:=\:(a\:+\:b)(a\:-\:b)}}}}

⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf{\dfrac{(1\:-\:SinA)(1\:-\:SinA)}{(1\:+\:SinA)(1\:-\:SinA)}}

⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf{\dfrac{1\:-\:SinA}{1\:+\:SinA}}

⠀⠀⠀⠀⠀⠀⠀

\longrightarrow LHS

⠀⠀⠀⠀⠀⠀⠀

Hence proved!

Answered by Anonymous
21

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

Prove that,

\sf{\:\dfrac{(1-\sin A)}{(1+\sin A)}\:=\:(\sec A - \tan A)^2}

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

First, Take L.H.S,

\mapsto\sf{\:\dfrac{(1-\sin A)}{(1+\sin A)}}

\small\sf{\:\:\:multiply\:by\:(1-\sin A)\:in\:numerator\:and\:denominator} \\ \\ \mapsto\sf{\:\dfrac{(1-\sin A)(1-\sin A)}{(1+\sin A)(1-\sin A)}} \\ \\ \mapsto\sf{\:\:\dfrac{(1 -\sin A)^2}{(1-\sin^2 A)}}

\small\sf{\:\:\:\:(1-\sin^2 A)\:=\:\cos^2 A} \\ \\ \mapsto\sf{\:\:\dfrac{(1-\sin A)^2}{\cos^2 A}} \\ \\ \mapsto\sf{\:\:\left(\dfrac{1-\sin^2 A}{\cos A}\right)^2} \\ \\ \mapsto\sf{\:\:\left(\dfrac{1}{\cos^2 A}-\dfrac{\sin^2 A}{\cos^2 A}\right)^2} \\ \\ \small\sf{\:\:\:\dfrac{1}{\cos A}\:=\:\sec A,\:\:\:\dfrac{\cos A}{\sin A}\:=\:\cot A} \\ \\ \mapsto\sf{\red{\:\:(\sec A-\cot A)^2}}

=R.H.S

That's proved

Similar questions