Math, asked by pruthvirajrupwate3, 10 months ago

trignometry solve this pls it is compound related ques.



prove that​

Attachments:

Answers

Answered by kaushik05
65

 \huge \red{\mathfrak{solution}}

To prove :

tan(45 -  \alpha ) =  \frac{cos (\alpha ) -  \sin( \alpha ) }{ \cos( \alpha  ) +  \sin( \alpha )  }  \\  \\

we have to use formula :

tan(a-b) =( tana - tanb/ 1+ tana tanb)

LHS

  \rightarrow\tan(45 -  \alpha )  \\  \\  \rightarrow \:  \frac{ \tan(45)  -  \tan( \alpha ) }{1  +  \tan(45)  \tan( \alpha ) } \\  \\ tan45 = 1

 \rightarrow \:  \frac{1 -  \tan( \alpha ) }{1 +  \tan( \alpha ) } \\  \\  \rightarrow \:  \frac{1 -  \frac{ \sin( \alpha ) }{ \cos( \alpha ) } }{1 +  \frac{ \sin( \alpha ) }{ \cos(  \alpha  ) } }  \\  \\  \rightarrow \:  \frac{ \frac{ \cos( \alpha ) -   \sin( \alpha )  }{ \cos( \alpha ) } }{ \frac{ \cos( \alpha ) +  \sin( \alpha )  }{ \cos( \alpha ) } }  \\  \\

Here cos@ gets cancel out

 \rightarrow  \: \huge{  \frac{ \cos( \alpha )  -  \sin( \alpha ) }{ \cos( \alpha ) +  \sin( \alpha )}  }

LHS= RHS

  \green{ \huge \: \mathfrak{proved}}

Answered by Anonymous
120

AnswEr :

To Prove :

 \sf \tan(45 -  \theta)  =  \dfrac{ \cos( \theta)  -  \sin( \theta) }{\cos( \theta)   +  \sin( \theta)}

Proof :

 \longrightarrow \large \sf \tan(45 -  \theta)

⠀⠀⠀⠀⋆ \small \sf \tan(a - b) =  \frac{ \tan(a)  -  \tan(b)  }{1 +  \tan(a) \tan(b)  }

 \longrightarrow  \large\sf  \dfrac{ \tan(45) -   \tan( \theta)  }{1 +  \tan(45) \tan( \theta)  }

⠀⠀⠀⠀⋆ \small \sf \tan(45)=1

 \longrightarrow  \large\sf  \dfrac{ 1 -   \tan( \theta)  }{1 +  (1 \times  \tan( \theta))  }

 \longrightarrow  \large\sf  \dfrac{ 1 -   \tan( \theta)  }{1  + \tan( \theta) }

 \longrightarrow  \large\sf  \dfrac{ 1 -    \frac{ \sin(\theta) }{ \cos(\theta) } }{1  +  \frac{ \sin(\theta) }{ \cos(\theta) }  }

 \longrightarrow  \large\sf  \dfrac{\frac{  \cos(\theta)  - \sin(\theta) }{  \cancel{\cos(\theta)} } }{\frac{  \cos(\theta)   +  \sin(\theta) }{  \cancel{\cos(\theta)} }  }

 \longrightarrow \large \boxed{ \sf \dfrac{\cos(\theta)  - \sin(\theta)}{\cos(\theta)   +  \sin(\theta)} }

Similar questions