Trigo questions...someone solve plzzzz
Answers
_____________________________________________________________
(1) If cos x + cos²x = 1 _________(1)
Prove that sin²x + sin⁴x =1
In equation (1)
cos x + cos²x = 1
cos x = 1 - cos²x
cos x = sin²x ______________(2)
Now,
sin²x + sin⁴x
= sin²x + (sin²x)²
= cos x + cos²x
= 1 [ By (2) ]
___________________________________________________________
(2) Prove that
LHS =
=
=
=
=
= 1-cos x
RHS =
=
=
= 2 + (-(1+cosx)
= 2- 1 - cos x
= 1 - cos x
LHS = RHS
___________________________________________________________
Hello Dear !
_____________________________________________________________
(1) If cos x + cos²x = 1 _________(1)
Prove that sin²x + sin⁴x =1
In equation (1)
cos x + cos²x = 1
cos x = 1 - cos²x
cos x = sin²x ______________(2)
Now,
sin²x + sin⁴x
= sin²x + (sin²x)²
= cos x + cos²x
= 1 [ By (2) ]
___________________________________________________________
(2) Prove that \frac{sinx}{cotx+cosecx} = \frac{2 + sinx}{cotx-cosecx}
cotx+cosecx
sinx
=
cotx−cosecx
2+sinx
LHS = \frac{sinx}{ \frac{cosx}{sinx} + \frac{1}{sinx} }
sinx
cosx
+
sinx
1
sinx
=
=\frac{sin^2x}{1+cosx}
1+cosx
sin
2
x
=\frac{1-cos^x}{1+cosx}
1+cosx
1−cos
x
=\frac{(1+cosx)(1-cosx)}{1+cosx}
1+cosx
(1+cosx)(1−cosx)
= 1-cos x
RHS =
= 2+ \frac{sinx}{cosx-1}2+
cosx−1
sinx
=\frac{2+[(1-cosx)(1+cosx)]}{-(1-cosx)}
−(1−cosx)
2+[(1−cosx)(1+cosx)]
= 2 + (-(1+cosx)
= 2- 1 - cos x
= 1 - cos x
LHS = RHS