Trigonometric formulae for CLASS 11th..
plz guys..I have been getting wrong answers since last three times.....
if u r not in 11th then kindly don't answer
Answers
Answered by
6
Answer:
Trigonometry Formulas :
- sin(−θ) = −sin θ
- cos(−θ) = cos θ
- tan(−θ) = −tan θ
- cosec(−θ) = −cosecθ
- sec(−θ) = sec θ
- cot(−θ) = −cot θ
Product to Sum Formulas :
- sin x sin y = 1/2 [cos(x–y) − cos(x+y)]
- cos x cos y = 1/2[cos(x–y) + cos(x+y)]
- sin x cos y = 1/2[sin(x+y) + sin(x−y)]
- cos x sin y = 1/2[sin(x+y) – sin(x−y)]
Sum to Product Formulas
- sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]
- sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]
- cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]
- cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]
Identities :
- sin²A + cos² A = 1
- 1+tan²A = sec²A
- 1+cot² A = cosec² A
Sign of Trigonometric Functions
in Different Quadrants :
Quadrants → I II III IV
- Sin A + + – –
- Cos A + – – +
- Tan A + – + -
- Cot A + – + –
- Sec A. + – – +
- Cosec A + + – –
Basic Trigonometric Formulas for Class 11
cos (A + B) = cos A cos B – sin A sin B
cos (A – B) = cos A cos B + sin A sin B
sin (A+B) = sin A cos B + cos A sin B
sin (A -B) = sin A cos B – cos A sin B
Based on the above addition formulas for sin and cos, we get the following below formulas:
- sin(π/2-A) = cos A
- cos(π/2-A) = sin A
- sin(π-A) = sin A
- cos(π-A) = -cos A
- sin(π+A)=-sin A
- cos(π+A)=-cos A
- sin(2π-A) = -sin A
- cos(2π-A) = cos A
If none of the angles A, B and (A ± B) is an odd multiple of π/2, then
- tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]
- tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]
If none of the angles A, B and (A ± B) is a multiple of π, then
- cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]
- cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]
Some additional formulas for sum and product of angles:
- cos(A+B) cos(A–B)=cos²A–sin2B=cos²B–sin²A
- sin(A+B) sin(A–B) = sin²A–sin²B=cos²B–cos²A
- sinA+sinB = 2 sin (A+B)/2 cos (A-B)/2
Formulas for twice of the angles:
- sin2A = 2sinA cosA = [2tan A /(1+tan²A)]
- cos2A = cos²A–sin²A = 1–2sin²A = 2cos²A–1= [(1-tan²A)/(1+tan²A)]
- tan 2A = (2 tan A)/(1-tan²A)
Formulas for thrice of the angles:
sin3A = 3sinA – 4sin³A
cos3A = 4cos³A – 3cosA
tan3A = [3tanA–tan³A]/[1−3tan²A]
Step-by-step explanation:
Mark mine as brainlest please .
Answered by
3
Step-by-step explanation:
PLEASE MARK ME AS BRAINLIEST...
I NEED HELP..
Attachments:
Similar questions
Social Sciences,
3 months ago
Social Sciences,
3 months ago
Social Sciences,
3 months ago
Math,
6 months ago
Physics,
6 months ago
English,
10 months ago
Math,
10 months ago