Math, asked by Anonymous, 6 months ago

Trigonometric formulae for CLASS 11th..

plz guys..I have been getting wrong answers since last three times.....

if u r not in 11th then kindly don't answer​

Answers

Answered by MrLoveRascal
6

Answer:

Trigonometry Formulas :

  1. sin(−θ) = −sin θ
  2. cos(−θ) = cos θ
  3. tan(−θ) = −tan θ
  4. cosec(−θ) = −cosecθ
  5. sec(−θ) = sec θ
  6. cot(−θ) = −cot θ

Product to Sum Formulas :

  1. sin x sin y = 1/2 [cos(x–y) − cos(x+y)]
  2. cos x cos y = 1/2[cos(x–y) + cos(x+y)]
  3. sin x cos y = 1/2[sin(x+y) + sin(x−y)]
  4. cos x sin y = 1/2[sin(x+y) – sin(x−y)]

Sum to Product Formulas

  1. sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]
  2. sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]
  3. cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]
  4. cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]

Identities :

  1. sin²A + cos² A = 1
  2. 1+tan²A = sec²A
  3. 1+cot² A = cosec² A

Sign of Trigonometric Functions

in Different Quadrants :

Quadrants → I II III IV

  1. Sin A + + – –
  2. Cos A + – – +
  3. Tan A + – + -
  4. Cot A + – + –
  5. Sec A. + – – +
  6. Cosec A + + – –

Basic Trigonometric Formulas for Class 11

cos (A + B) = cos A cos B – sin A sin B

cos (A – B) = cos A cos B + sin A sin B

sin (A+B) = sin A cos B + cos A sin B

sin (A -B) = sin A cos B – cos A sin B

Based on the above addition formulas for sin and cos, we get the following below formulas:

  • sin(π/2-A) = cos A
  • cos(π/2-A) = sin A
  • sin(π-A) = sin A
  • cos(π-A) = -cos A
  • sin(π+A)=-sin A
  • cos(π+A)=-cos A
  • sin(2π-A) = -sin A
  • cos(2π-A) = cos A

If none of the angles A, B and (A ± B) is an odd multiple of π/2, then

  • tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]
  • tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]

If none of the angles A, B and (A ± B) is a multiple of π, then

  • cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]
  • cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]

Some additional formulas for sum and product of angles:

  • cos(A+B) cos(A–B)=cos²A–sin2B=cos²B–sin²A
  • sin(A+B) sin(A–B) = sin²A–sin²B=cos²B–cos²A
  • sinA+sinB = 2 sin (A+B)/2 cos (A-B)/2

Formulas for twice of the angles:

  • sin2A = 2sinA cosA = [2tan A /(1+tan²A)]
  • cos2A = cos²A–sin²A = 1–2sin²A = 2cos²A–1= [(1-tan²A)/(1+tan²A)]
  • tan 2A = (2 tan A)/(1-tan²A)

Formulas for thrice of the angles:

sin3A = 3sinA – 4sin³A

cos3A = 4cos³A – 3cosA

tan3A = [3tanA–tan³A]/[1−3tan²A]

Step-by-step explanation:

Mark mine as brainlest please .

Answered by varshasingh85
3

Step-by-step explanation:

PLEASE MARK ME AS BRAINLIEST...

I NEED HELP..

Attachments:
Similar questions