Trigonometric formulas
Answers
Answered by
0
I am not sure but this is right answer
Attachments:
Answered by
8
Trigonometry Formulas
- sin(−θ) = −sin θ
- cos(−θ) = cos θ
- tan(−θ) = −tan θ
- cosec(−θ) = −cosecθ
- sec(−θ) = sec θ
- cot(−θ) = −cot θ
Product to Sum Formulas
- sin x sin y = 1/2 [cos(x–y) − cos(x+y)]
- cos x cos y = 1/2[cos(x–y) + cos(x+y)]
- sin x cos y = 1/2[sin(x+y) + sin(x−y)]
- cos x sin y = 1/2[sin(x+y) – sin(x−y)]
Sum to Product Formulas
- sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]
- sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]
- cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]
- cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]
Sum or Difference of angles
- cos (A + B) = cos A cos B – sin A sin B
- cos (A – B) = cos A cos B + sin A sin B
- sin (A+B) = sin A cos B + cos A sin B
- sin (A -B) = sin A cos B – cos A sin B
- tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]
- tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]
- cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]
- cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]
- cos(A+B) cos(A–B)=cos^2A–sin^2B=cos^2B–sin^2A
- sin(A+B) sin(A–B) = sin^2A–sin^2B=cos^2B–cos^2A
Multiple and Submultiple angles
- sin2A = 2sinA cosA = [2tan A /(1+tan²A)]
- cos2A = cos²A–sin²A = 1–2sin²A = 2cos²A–1= [(1-tan²A)/(1+tan²A)]
- tan 2A = (2 tan A)/(1-tan²A)
_____________________
Similar questions
Math,
1 month ago
Computer Science,
1 month ago
English,
1 month ago
Political Science,
3 months ago
Science,
3 months ago
Math,
10 months ago
Math,
10 months ago