Math, asked by tushar2036, 8 months ago

trigonometric problem

Attachments:

Answers

Answered by Anonymous
2

Question:-

 \rm \:if \:   \tan(A)  =  \frac{3}{4}  \: then \:  \sin(A)  \cos(A)  =  \frac{12}{25}

Solution:-

 \rm \:  \tan(A)  =  \frac{3}{4}  =  \frac{p}{b}

 \rm \: p = 3 \:  \:  \: b  =4 \:  \: and \: h = x

Using phythogoeros theorem

 \rm \:  {h}^{2}  =  {p}^{2}  +  {b}^{2}

 \rm \:  {x}^{2}  =  {3}^{2}  +  {4}^{2}

 \rm \:  {x}^{2}  = 9 + 16

 \rm \:  {x}^{2}  = 25

 \rm \: x = 5

So

\rm \: p = 3 \:  \:  \: b  =4 \:  \: and \: h = 5

  \rm \: \sin(A)  =  \frac{p}{h}   =  \frac{3}{5}

 \rm \:  \cos(A)  =  \frac{b}{h}  =  \frac{4}{5}

So we have

 \rm \: \sin(A)  \cos(A)  =  \frac{12}{25}

 \rm \:  \frac{3}{5}  \times  \frac{4}{5}  =  \frac{12}{25}

 \rm \:  \frac{12}{25}  =  \frac{12}{25}

Hence proved

Answered by HITESHDASHPUTE
0

Answer:

Question:-

\rm \:if \: \tan(A) = \frac{3}{4} \: then \: \sin(A) \cos(A) = \frac{12}{25}iftan(A)=

4

3

thensin(A)cos(A)=

25

12

Solution:-

\rm \: \tan(A) = \frac{3}{4} = \frac{p}{b}tan(A)=

4

3

=

b

p

\rm \: p = 3 \: \: \: b =4 \: \: and \: h = xp=3b=4andh=x

Using phythogoeros theorem

\rm \: {h}^{2} = {p}^{2} + {b}^{2}h

2

=p

2

+b

2

\rm \: {x}^{2} = {3}^{2} + {4}^{2}x

2

=3

2

+4

2

\rm \: {x}^{2} = 9 + 16x

2

=9+16

\rm \: {x}^{2} = 25x

2

=25

\rm \: x = 5x=5

So

\rm \: p = 3 \: \: \: b =4 \: \: and \: h = 5p=3b=4andh=5

\rm \: \sin(A) = \frac{p}{h} = \frac{3}{5}sin(A)=

h

p

=

5

3

\rm \: \cos(A) = \frac{b}{h} = \frac{4}{5}cos(A)=

h

b

=

5

4

So we have

\rm \: \sin(A) \cos(A) = \frac{12}{25}sin(A)cos(A)=

25

12

\rm \: \frac{3}{5} \times \frac{4}{5} = \frac{12}{25}

5

3

×

5

4

=

25

12

\rm \: \frac{12}{25} = \frac{12}{25}

25

12

=

25

12

i hope it will help you

plz mark me as brainliest

Similar questions