trigonometric problem
Answers
Question:-
Solution:-
Using phythogoeros theorem
So
So we have
Hence proved
Answer:
Question:-
\rm \:if \: \tan(A) = \frac{3}{4} \: then \: \sin(A) \cos(A) = \frac{12}{25}iftan(A)=
4
3
thensin(A)cos(A)=
25
12
Solution:-
\rm \: \tan(A) = \frac{3}{4} = \frac{p}{b}tan(A)=
4
3
=
b
p
\rm \: p = 3 \: \: \: b =4 \: \: and \: h = xp=3b=4andh=x
Using phythogoeros theorem
\rm \: {h}^{2} = {p}^{2} + {b}^{2}h
2
=p
2
+b
2
\rm \: {x}^{2} = {3}^{2} + {4}^{2}x
2
=3
2
+4
2
\rm \: {x}^{2} = 9 + 16x
2
=9+16
\rm \: {x}^{2} = 25x
2
=25
\rm \: x = 5x=5
So
\rm \: p = 3 \: \: \: b =4 \: \: and \: h = 5p=3b=4andh=5
\rm \: \sin(A) = \frac{p}{h} = \frac{3}{5}sin(A)=
h
p
=
5
3
\rm \: \cos(A) = \frac{b}{h} = \frac{4}{5}cos(A)=
h
b
=
5
4
So we have
\rm \: \sin(A) \cos(A) = \frac{12}{25}sin(A)cos(A)=
25
12
\rm \: \frac{3}{5} \times \frac{4}{5} = \frac{12}{25}
5
3
×
5
4
=
25
12
\rm \: \frac{12}{25} = \frac{12}{25}
25
12
=
25
12
i hope it will help you
plz mark me as brainliest