trigonometric ratio of complementary angle
3 cotton 31 tan 15 cot 27 tan 75 cot 63 cot 59
Answers
Correct Question:
3cot(31) tan(15) cot(27) tan(75) cot(63) cot(59)
Your Answer:
We know that
cot(90-A) = tan A
tan(90-A) = cot A
So,
cot 31 = cot ( 90 - 59 ) = tan 59
tan 15 = tan ( 90 - 75 ) = cot 75
cot 27 = cot ( 90 - 63 ) = tan 63
Replacing Values in the Equation
= 3 tan 59. cot 75. tan 63. tan 75. cot 63. cot 59
Taking them in a correct order
= 3 tan 59. cot 59 . cot 75. tan 75. tan 63. cot 63
We also know that cot A. tan A = 1
= 3 (1)(1)(1)
= 3
So, Answer is 3
More to know:
- cos A = sin ( 90 - A )
- sin A = cos ( 90 - A )
- sec A = cosec ( 90 - A )
- cosec A = sec ( 90 - A )
- sin A / cos A = tan A
- cos A / sin A = cot A
- 1/cos A = sec A
- 1/sin A = cosec A
Answer:
3cot(31) tan(15) cot(27) tan(75) cot(63) cot(59)
Your Answer:
We know that
cot(90-A) = tan A
tan(90-A) = cot A
So,
cot 31 = cot ( 90 - 59 ) = tan 59
tan 15 = tan ( 90 - 75 ) = cot 75
cot 27 = cot ( 90 - 63 ) = tan 63
Replacing Values in the Equation
= 3 tan 59. cot 75. tan 63. tan 75. cot 63. cot 59
Taking them in a correct order
= 3 tan 59. cot 59 . cot 75. tan 75. tan 63. cot 63
We also know that cot A. tan A = 1
= 3 (1)(1)(1)
= 3
So, Answer is 3
More to know:
- cos A = sin ( 90 - A )
- sin A = cos ( 90 - A )
- sec A = cosec ( 90 - A )
- cosec A = sec ( 90 - A )
- sin A / cos A = tan A
- cos A / sin A = cot A
- 1/cos A = sec A
- 1/sin A = cosec A