Math, asked by BRAINLYxKIKI, 1 month ago

★ Trigonometry ★

1: If \sf{cot\:\theta \:=\: \dfrac{7}{8}} , evaluate :

\boxed{\sf{\red{\dfrac{( 1 \:+\: sin \theta ) ( 1 \:-\: sin \theta )}{( 1 \:+\: cos \theta ) ( 1 \:-\: cos \theta )} }}}

\boxed{\sf{\red{cot² \theta }}}

→ No spams dear users
→ Good answers will be appreciated
→ Quality answer will be marked Brainliest​

Answers

Answered by hemanji2007
21

Question:

 \cos  \alpha  =  \frac{7}{8} then \:  \frac{(1 +  \sin\alpha)(1 -  \sin\alpha )   }{(1  +   \cos \alpha )( 1  -   \cos\alpha ) }  =

Solution:

here \: tan \alpha  =  \frac{1}{cot \alpha }  \\ tan \alpha  =   \frac{1}{ \frac{7}{8 } }  \\ tan \alpha  =  \frac{8}{7}

then \: by \: using \: phythagoraen \: \: triplet \: find \: sin \alpha \:  and \: cos \alpha

we \: get \: the \: third \: side \: of \: the \: triangle(hypotenuse) \: is \:  \sqrt{113}

 \sin( \alpha )  =  \frac{8}{ \sqrt{113} }

 \cos( \alpha )  =  \frac{7}{ \sqrt{113} }

 \frac{(1 + sin \alpha )(1 -  \sin \alpha)  }{  (1 + cos \alpha)(1 -  \cos \alpha )  }  \\ it \: is \: in \: the \: form \: of \: (a + b)(a - b)

it is a²-b²

 \frac{ {1}^{2} -  {  \sin }^{2} \alpha   }{ {1}^{2}  -  \ { \cos }^{2} \alpha   }

 \frac{ {1}-   \frac{ {8}^{2} }{ { \sqrt{(113}) }^{2} }   }{1 -  \frac{ {7}^{2} }{ \sqrt{ {(113)}^{2} } } }

 \frac{1 -  \frac{64}{113} }{1 -  \frac{49}{113} }

 \frac{49}{64}

Answer:

 \frac{49}{64}

More information:

Trigon metric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigometric relations

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonmetric ratios

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Answered by user0888
8

Before solving:-

Here, we can see trigonometric identities being used. Usually, identities are used for fast calculations. First, let's simplify the fraction and let's apply it.

What's used:-

Trigonometric Identity \sin^2\theta+\cos^2\theta=1

Solution:-

Evaluating the first value

In the first view of trigonometric calculations, we expect them to be boring and messy. But it is actually not when we use a trick. We can calculate in a very simple way. The trick is seeing that,

  • 1-\sin^2\theta=\cos^2\theta
  • 1-\cos^2\theta=\sin^2\theta

Hence, given fraction

=\dfrac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)}

=\dfrac{1-\sin^2\theta}{1-\cos^2\theta}

=\dfrac{\cos^2\theta}{\sin^2\theta}

=\cot^2\theta=\boxed{\dfrac{49}{64} }.

Evaluating the second value

When we write the power of a term we write as (\cot\theta)^2. However, in trigonometric ratios, it is possible to write it as \cot^2\theta, but it is only possible for natural power.

So, \cot^2\theta=(\cot\theta)^2.

We can substitute the given value.

Evaluated value

=\cot^2\theta

=(\cot\theta)^2

=(\dfrac{7}{8} )^2=\boxed{\dfrac{49}{64} }

More information

Kinds of reciprocal trigonometric functions.

  • \sin\theta\rightarrow \csc\theta
  • \cos\theta\rightarrow \sec\theta
  • \tan\theta\rightarrow\cot\theta

Inverse trigonometric functions.

→ These are used in finding the angles when you know the trigonometric values. Substituting trigonometric values in these functions gives the angles.

  • \sin\theta\rightarrow \arcsin
  • \cos\theta\rightarrow \arccos
  • \tan\theta\rightarrow\arctan
Similar questions