Math, asked by rahul9883, 1 year ago

trigonometry all formulas plz tell


rahul6148: kal time batao
rahul6148: yrf
rahul6148: yrr

Answers

Answered by nosumittiwari3
16
 \huge{Hello Mate!!}

 TRIGONOMETRY ALL FORMULAS..

SinA = P / H
CosA = B / H
TanA = P / B
CotA = B / P
CosecA = H / P
SecA = H/B
Sin2A + Cos2A = 1
Tan2A + 1 = Sec2A
Cot2A + 1 = Cosec2A
1. TanA = SinA / CosA
2. CotA = CosA / SinA
3. CosecA = 1 / SinA
4. SecA = 1 / CosA
Sin (A +B) =SinA . CosB + CosA . SinB
Sin (A – B) = SinA . CosB – CosA . SinB
Cos (A + B) = CosA . CosB – SinA . SinB
Cos (A – B) = CosA. CosB + SinA . SinB
Tan (A + B) = TanA + TanB / 1 – TanA . TanB
Tan (A – B) = TanA –TanB / 1 + TanA . TanB
Sin ( A + B) . Sin (A – B) = Sin2A – Sin2B = Cos2B – Cos2A
Cos (A + B) . Cos (A – B) = Cos2A – Sin2B = Cos2B – Sin2A
Sin2A = 2 . SinA . CosA = 2 . TanA / (1 + Tan2A)
Cos2A = Cos2A – Sin2A = 1 – 2Sin2A = 2Cos2A – 1 = (1 – Tan2A) / (1 + Tan2A)
Tan2A = 2TanA / (1 – Tan2A)
Sin3A = 3 . SinA – 4 . Sin3A
Cos3A = 4 . Cos3A – 3 . CosA
Tan3A = (3TanA – Tan3A) / (1 – 3Tan2A)
SinA + SinB = 2 Sin (A + B)/2 Cos (A – B)/2
SinA – SinB = 2 Sin (A – B)/2 Cos (A + B)/2
CosA + CosB = 2 Cos(A – B)/2 Cos (A + B)/2
CosA – CosB = 2 Sin(B – A)/2 Sin (A + B)/2
TanA + TanB = Sin (A + B) / CosA . CosB
SinA CosB = Sin (A + B) + Sin (A – B)
CosA SinB = Sin (A + B) – Sin (A – B)
CosA CosB = Cos (A + B) + Cos (A – B)
SinA SinB = Cos (A – B) – Cos (A + B)

===============================

 <marquee > HOPE ITS HELP YOU

================================

___Sumit Tiwari from Azamgarh____(^_-)
Answered by Brenquoler
2

 { \red{ \bf{   Information \: related \: to \:Trigonometry:}}}

 { \green{ \bf{ sin θ = Opposite Side/Hypotenuse  }}}

 { \green{ \bf{  cos θ = Adjacent Side/Hypotenuse }}}

 { \green{ \bf{tan θ = Opposite Side/Adjacent Side   }}}

 { \green{ \bf{sec θ = Hypotenuse/Adjacent Side   }}}

 { \green{ \bf{  cosec θ = Hypotenuse/Opposite Side }}}

 { \green{ \bf{  cot θ = Adjacent Side/Opposite Side }}}

 { \red{ \bf{Their \: reciprocal \: Identities:   }}}

 { \green{ \bf{  cosec θ = 1/sin θ }}}

 { \green{ \bf{ sec θ = 1/cos θ  }}}

 { \green{ \bf{  cot θ = 1/tan θ }}}

 { \green{ \bf{sin θ = 1/cosec θ   }}}

 { \green{ \bf{ cos θ = 1/sec θ  }}}

 { \green{ \bf{   tan θ = 1/cot θ}}}

 { \red{ \bf{ Their \: co-function \: Identities:  }}}

 { \green{ \bf{  sin (90°−x) = cos x }}}

 { \green{ \bf{cos (90°−x) = sin x   }}}

 { \green{ \bf{ tan (90°−x) = cot x  }}}

 { \green{ \bf{  cot (90°−x) = tan x }}}

 { \green{ \bf{ sec (90°−x) = cosec x  }}}

 { \green{ \bf{ cosec (90°−x) = sec x  }}}

 { \red{ \bf{ Their \: fundamental \: trigonometric \: identities:  }}}

 { \green{ \bf{  sin²θ + cos²θ = 1 }}}

 { \green{ \bf{  sec²θ - tan²θ = 1 }}}

 { \green{ \bf{ cosec²θ - cot²θ = 1  }}}

Similar questions