Math, asked by CaptainJayesh, 11 months ago

trigonometry batado pls friends​

Attachments:

Answers

Answered by sukantkumar
2

Answer:

 \cos(a)  =  \frac{1}{2}  \\ then \:  \cos(30)  =  \frac{1}{2}  \\ a = 30 \\  \sin(b)  =  \frac{1}{ \sqrt{2} }  \\ then \:  \: b = 45 \\ we \: use \: the \: formula \\ tan(a - b)  =  \frac{ \tan(a)  -  \tan(b) }{1 +  \tan(a) \tan(b)  }  \\  \frac{ \tan(30) -  \tan(45)  }{1 +  \tan(30) \tan(45)  }  =  \frac{ \frac{1}{ \sqrt{3} } - 1 }{1 +  \frac{1}{ \sqrt{3} } \times 1 }  \\   = \frac{ \frac{1 -  \sqrt{3} }{ \sqrt{3} } }{ \frac{1 +  \sqrt{3} }{ \sqrt{3} } }  \\  =  \frac{1 -  \sqrt{3} }{1 +  \sqrt{3} }  \\ ratanaize \: it \\  \frac{1 -  \sqrt{3} }{1 +  \sqrt{3} }  \times  \frac{1  -   \sqrt{3} }{1 -  \sqrt{3} }  \\  = \frac{1 + 3 - 2 \sqrt{3} }{1 - 3 }  =  \frac{2(2 -  \sqrt{3)} }{ - 2 }  \\  =  - (2 -  \sqrt{3} )

it also solved by second method

 \tan(a - b)  =  \tan(30 - 45)  \\  \tan( - 15 )  =  -  \tan(15)  \\  \ - tan(15)  =  - (2 -  \sqrt{3} )

your answer

Similar questions