*Trigonometry Class 10*
RD SHARMA (12th Revised 2019)
Exe.11.1
_____________________________________________________
Q.68. Prove that:
(cosecA - secA)(cotA - tanA) = (cosecA + secA)(secA.cosecA - 2)
_____________________________________________________
Q.74 Prove that:
_____________________________________________________
Thanks in advance!
Answers
Hi there !!
Look at the attachment ↑↑
Identity used :-
a²-b²=(a+b)(a-b)
(a-b)² = a²+b²-2ab
sin²0+ cos²0=1
cos²0 = 1- sin²0
cosec0 = 1/sin0
sec0= 1/cos0
cot0 = cos0/sin0
tan0 = sin0/cos0
Thankyou :)
Q 68. (cosecA - secA)(cotA - tanA) = (cosecA + secA)(secA cosecA - 2)
Proof: We will solve the R.H.S first.
R.H.S → (cosecA + secA)(secA cosecA - 2)
R.H.S → (1/sinA + 1/cosA)(1/cosA · 1/sinA - 2)
R.H.S → (cosA + sinA)/sinA cosA × (1 - 2 sinA cosA)/sinA cosA
R.H.S → (cosA + sinA)/sinA cosA × (cosA - sinA)²/sinA cosA
R.H.S → (cosA + sinA)(cosA - sinA)(cosA - sinA)/sin²A cos²A
Now solving L.H.S we get,
L.H.S → (cosecA - secA)(cotA - tanA)
L.H.S → (1/sinA - 1/cosA)(cosA/sinA - sinA/cosA)
L.H.S → (cosA - sinA)/sinA cosA × (cos²A - sin²A)/sinA cosA
L.H.S → (cosA - sinA)(cosA + sinA)(cosA - sinA)/sin²A cos²A
Since L.H.S = R.H.S
Hence Proved
______________________________
Q 74. cot²A(secA - 1)/(1 + sinA) = sec²A(1 - sinA)/(1 + secA)
Proof: Given in attachment
Remember that:
- Identities has been used
- (1 - cos²A) = (1 + cosA)(1 - cosA)
- (1 - sin²A) = (1 + sinA)(1 - sinA)