*Trigonometry Class 10*
RD SHARMA (12th Revised 2019)
Exe.11.1
_____________________________________________________
Q.83. Given that:
(1 + cosA)(1 + cosB)(1 + cosC) = (1 - cosA)(1 - cosB)(1 - cosC)
Show that one of the values of each member of this equality is SinA.SinB.SinC
_____________________________________________________
**Please explain the meaning of the question first and then answer it.**
Thanks in advance!!
Answers
Answer:
(1+cosA)(1+cosB)(1+cosC) = 1 [ dividing both sides with (1-cosA)(1-cosB)(1-cosC)]
(1-cosA)(1-cosB)(1-cosC)
multiplying the numerator and the denominator by (1-cosA)(1-cosB)(1-cosC); we get :
(1+cosA)(1-cosA)(1+cosB)(1-cosB)(1+cosC)(1-cosC) = 1 [ (1-cosA)(1+cosA) = sin2A { sin square A } ]
(1-cosA)(1-cosA)(1-cosB)(1-cosC)(1-cosC)
(sinA.sinB.sinC) = (1-cosA)(1-cosB)(1-cosC)
{ applying square root}
which is obviously equal to (1+cosA)(1+cosB)(1+cosC)
Answer:
Proved!!
Step-by-step explanation:
Given Problem:
Given that:
(1 + cosA)(1 + cosB)(1 + cosC) = (1 - cosA)(1 - cosB)(1 - cosC)
Show that one of the values of each member of this equality is SinA.SinB.SinC
Solution:
To Show:
That one of the values of each member of this equality is SinA.SinB.SinC
Method:
Given that,
Now,
Multiply numerator & denominator by,
After multiplication we will get,
Hence Proved!!
Thanks :)