Math, asked by akansha274, 1 year ago

trigonometry. ( cosecA - sinA) ( secA - cos A) = 1/ tanA + cotA


Ankit13335: hi

Answers

Answered by Anonymous
16
☺✌heya mate here is your answer ☺✌


hope this may be helpfull to you ❤


pls mark as brainlist


@alishka ❤
Attachments:

Ankit13335: hi
akansha274: can you one more pls
Anonymous: ohk
akansha274: thnks
Anonymous: my pleasure
Answered by InnocentBOy143
2

\huge\bigstar\mathfrak\red{\underline{\underline{SOLUTION:}}}

Consider the L.H.S,

(cosec \theta - sin \theta)(sec \theta - cos \theta) \\  =  > ( \frac{1}{sin \theta }  - sin \theta)( \frac{1}{cos \theta}  - cos \theta) \\  \\   =  > ( \frac{1 -  {sin}^{2} \theta}{sin \theta} )( \frac{ 1 -  {cos}^{2}  \theta}{cos \theta} ) \\  \\  =  >  \frac{ {cos}^{2} \theta }{sin \theta}  \times  \frac{ {sin}^{2}  \theta}{cos \theta}  = sin \theta \: cos \theta

Consider the R.H.S,

 \frac{1}{tan \theta + cot \theta} \\  =  >  \frac{1}{ \frac{sin \theta}{cos \theta}   +  \frac{cos \theta}{sin \theta} }   \\  \\  =  >  \frac{1}{ \frac{ {sin}^{2} \theta +  {cos}^{2}  \theta }{sin \theta  \:cos \theta} }  \\  \\  =  >  \frac{sin \theta \: cos \theta}{ {cos}^{2} \theta +  {sin}^{2}  \theta }  \\  \\  =  > sin \theta \: cos \theta \:  \:  \: ( {sin}^{2}  \theta +  {cos}^{2}  \theta = 1)

Since, L.H.S = R.H.S

Therefore,

 =  > (cosec \theta - sin \theta)(sec \theta - cos \theta) =  \frac{1}{tan \theta + cot \theta}

hope it helps ☺️

Similar questions