Math, asked by saiyuthought, 10 months ago

trigonometry equations​

Attachments:

Answers

Answered by BrainlyConqueror0901
13

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  \frac{1 -  {tan}^{2}  \theta}{ {cot}^{2}  \theta - 1}  =  {tan}^{2}  \theta \\  \\ \red{\underline \bold{To \:Prove:}} \\  \tt:  \implies  \frac{1 -  {tan}^{2}  \theta}{ {cot}^{2}  \theta - 1}  =  {tan}^{2}  \theta

• According to given question :

\tt:  \implies  \frac{1 -  {tan}^{2}  \theta}{ {cot}^{2}  \theta - 1}  =  {tan}^{2}  \theta \\  \\  \bold{solving \: lhs} \\ \tt:  \implies  \frac{1 -  {tan}^{2}  \theta}{ {cot}^{2}  \theta - 1} \\ \\  \tt \circ \:  {tan}^{2} \theta =  {sec}^{2}  \theta - 1   \\ \tt:  \implies  \frac{1 -(  {sec}^{2}  \theta - 1)}{ {cot}^{2} \theta - 1 }  \\  \\ \tt:  \implies  \frac{1 -  {sec}^{2} \theta  + 1 }{ {cot}^{2}  \theta - 1}  \\  \\  \tt \circ \:  {cot}^{2} \theta + 1 =  {cosec}^{2} \theta   \\ \tt:  \implies  \frac{  - {sec}^{2} \theta }{  {cot}^{2}  \theta - ( {cosec}^{2} \theta  -  {cot}^{2} \theta)  } \\  \\ \tt:  \implies  \frac{  - {sec}^{2} \theta }{ {cot}^{2} \theta  -  {cosec}^{2} \theta  +  {cot}^{2} \theta }  \\  \\ \tt:  \implies   \frac{ -  {sec}^{2} \theta }{ -  {cosec}^{2} \theta }   \\  \\ \tt:  \implies  \frac{1}{ {cos}^{2} \theta }  \times   {sin}^{2}  \theta \\  \\ \tt:  \implies   \frac{ {sin}^{2}  \theta}{ {cos}^{2} \theta }  \\  \\  \green{\tt:  \implies  {tan}^{2}  \theta} \\  \\  \green{\tt \: lhs = rhs}\\\\ \red{\huge{\tt Proved}}

Answered by VishnuPriya2801
11

Answer:-

Theta is taken as "A".

(1 - tan² A)/(Cot² A - 1) = tan² A

After cross multiplication we get,

→ (1 - tan² A) = tan² A * Cot² A - (1)(tan² A)

→ (1 - tan² A) = tan² A(1/tan² A) - tan² A

(Since, Cot² A = 1/tan² A)

Cancelling tan² A in RHS we get,

→ 1 - tan² A = 1 - tan² A

→ LHS = RHS.

Hence, Proved.

Similar questions