Trigonometry formula to transform the sum or difference into product class 11 by video
Answers
If X and Y are any two real numbers or angles, then
(a) sin (X + Y) + sin (X - Y) = 2 sin X cos Y
(b) sin (X + Y) - sin (X - Y) = 2 cos X sin Y
(c) cos (X + Y) + cos (X - Y) = 2 cos X cos Y
(d) cos (X - Y) - cos (X + Y) = 2 sin X sin Y
(a), (b), (c) and (d) are considered as formulae of transformation from sum or difference to product.
Proof:
(a) We know that sin (X + Y) = sin X cos Y + cos X sin Y ……… (i)
and sin (X - Y) = sin X cos Y - cos X sin Y ……… (ii)
Adding (i) and (ii) we get,
sin (X + Y) + sin (X - Y) = 2 sin X cos Y ………………..… (1)
(b) We know that sin (X + Y) = sin X cos Y + cos X sin Y ……… (i)
and sin (X - Y) = sin X cos Y - cos X sin Y ……… (ii)
Subtracting (ii) from (i) we get,
sin (X + Y) - sin (X - Y) = 2 cos X sin Y ………………..… (2)
(c) We know that cos (X + Y) = cos X cos Y + sin X sin Y ……… (iii)
and cos (X - Y) = cos X cos Y - sin X sin Y ……… (iv)
Adding (iii) and (iv) we get,
cos (X + Y) + cos (X - Y) = 2 cos X cos Y ………………..… (3)
(d) We know that cos (X + Y) = cos X cos Y + sin X sin Y ……… (iii)
and cos (X - Y) = cos X cos Y - sin X sin Y ……… (iv)
Subtracting (iii) from (iv) we get,
cos (X - Y) - cos (X + Y) = 2 sin X sin Y ………………..… (4)
Let, X + Y = α and X - Y = β.
Then, we have, X = (α + β)/2 and B = (α - β)/2.
Clearly, formula (1), (2), (3) and (4) reduce to the following forms in terms of C and D:
sin α + sin β = 2 sin (α + β)/2 cos (α - β)/2 ………. (5)
sin α - sin β = 2 cos (α + β)/2 sin (α - β)/2 ……… (6)
cos α + cos β = 2 cos (α + β)/2 cos (α - β)/2 ……… (7)
And cos α - cos β = -2 sin (α + β)/2 sin (α - β)/2
⇒ cos α - cos β = 2 sin (α + β)/2 sin (β - α)/2 ……… (8)
Note: (i) Formula sin α + sin β = 2 sin (α + β)/2 cos (α - β)/2 is transform the sum of two sines into a product of a pair of sine and cosine.
(ii) Formula sin α - sin β = 2 cos (α + β)/2 sin (α - β)/2 is transform the difference of two sines into a product of a pair of cosine and sine.
(iii) Formula cos α + cos β = 2 cos (α + β)/2 cos (α - β)/2 is transform the sum of two cosines into a product of two cosines.
(iv) Formula cos α - cos β = 2 sin (α + β)/2 sin (β - α)/2 is transforms the difference of two cosines into a product of two sines.