Math, asked by 11914, 1 day ago

Trigonometry:
If A is an acute angle in a right
ABC, right angled at B, then the value of
Sin A + cos A is
(A) equal to one
C) less than one
(B) greater than one
(D) equal to two

Answers

Answered by mathdude500
60

\large\underline{\sf{Solution-}}

Given that,

A is an acute angle in right angled triangle ABC, right angled at B.

Now, we know that

\rm \: sinA = \dfrac{opposite \: side}{hypotenuse}

\rm\implies \:sinA = \dfrac{BC}{AC}  \\

Also, we know that

\rm \: cosA = \dfrac{adjacent \: side}{hypotenuse}

\rm\implies \:cosA \:  =  \: \dfrac{AB}{AC}  \\

Now, Consider

\rm \: sinA + cosA \\

\rm \:  =  \: \dfrac{BC}{AC}  + \dfrac{AB}{AC}

\rm \:  =  \: \dfrac{BC + AB}{AC}

We know,

In triangle, sum of any two sides is greater than third side.

\rm \:  >   \: \dfrac{AC}{AC}

\rm \:  >   \: 1

Hence,

\rm\implies \:sinA \:  +  \: cosA \:  >  \: 1 \\

So, option (B) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Attachments:
Answered by Anonymous
75

Answer:

Given :

  • If A is an acute angle in a right ABC, right angled at B.

To Find :-

  • What is the value of Sin A + Cos A.

Solution :-

\bigstar If A is an acute angle in a right ABC, right angled at B.

As we know that :

\longrightarrow \sf\boxed{\bold{\pink{Sin\: A =\: \dfrac{Opposite\: Side}{Hypotenuse}}}}\\

Given :

  • Opposite Side = BC
  • Hypotenuse = AC

According to the question by using the formula we get,

\implies \sf Sin\: A =\: \dfrac{BC}{AC}

\implies \sf\bold{\purple{Sin\: A =\: \dfrac{BC}{AC}}}

Again, we know that :

\longrightarrow \sf\boxed{\bold{\pink{Cos\: A =\: \dfrac{Adjacent\: Side}{Hypotenuse}}}}\\

Given :

  • Adjacent Side = AB
  • Hypotenuse = AC

According to the question by using the formula we get,

\implies \sf Cos\: A =\: \dfrac{AB}{AC}

\implies \sf\bold{\purple{Cos\: A =\: \dfrac{AB}{AC}}}

Now, we have to find the value of Sin A + Cos A :

Given :

\bullet \: \: \bf Sin\: A =\: \dfrac{BC}{AC}

\bullet \: \: \bf Cos\: A =\: \dfrac{AB}{AC}

So, by putting the values we get,

\dashrightarrow \sf\bold{\green{Sin\: A + Cos\: A}}

\dashrightarrow \sf \dfrac{BC}{AC} + \dfrac{AB}{AC}

\dashrightarrow \sf \dfrac{BC + AB}{AC}

As we know that :

\leadsto The sum of two sides of a triangle is greater than the third side.

So,

\mapsto \sf\bold{\red{Sin\: A + Cos\: A >\: \dfrac{AC}{AC} =\: 1}}

\therefore The value of Sin A + Cos A is greater than one .

Hence, the correct options is option no (B) greater than one .

Attachments:
Similar questions