Math, asked by blackpinf4ever, 1 year ago

TRIGONOMETRY
NO SPAM ❌

Attachments:

Answers

Answered by ishalokesh
0

plz let me know if your doubts are not cleared...

Attachments:
Answered by Anonymous
1

Step-by-step explanation:

To Prove : {\sf{\ \ 1 + {\dfrac{1}{cos A}} = {\dfrac{tan^2 A}{sec A - 1}} }}

_______________________________

R.H.S. = {\sf{\ \ {\dfrac{tan^2 A}{sec A - 1}}}}

_______________________________

{\boxed{\tt{\bigstar \ \ Identity \ : \ 1 + tan^2 \theta = sec^2 \theta }}}

{\tt{From \ this, \ we \ get \ [ tan^2 \theta = sec^2 \theta - 1 ]}}

_______________________________

\implies{\sf{ {\dfrac{sec^2 A - 1}{sec A - 1}}}}

_______________________________

  • We can write this as :

\implies{\sf{ {\dfrac{ (sec A)^2 - (1)^2 }{sec A - 1}}}}

_______________________________

{\boxed{\tt{\bigstar \ \ Identity \ : \ a^2 - b^2 = (a + b)(a - b)}}}

{\tt{Here, \ a = sec A, \ b = 1}}

_______________________________

\implies{\sf{ {\dfrac{ (sec A + 1)(sec A - 1)}{ sec A - 1}}}}

_______________________________

  • Cancelling the common terms.

\implies{\sf{sec A + 1}}

_______________________________

{\boxed{\tt{\bigstar \ \ Identity \ : \ sec \theta = {\dfrac{1}{cos \theta}}}}}

_______________________________

\implies{\sf{ {\dfrac{1}{cos A}} + 1}}

_______________________________

= R.H.S.

Hence, proved !!

Similar questions