Trigonometry problem: if A+B+C=π then prove: cos^2 A/2+ cos^2 B/2+ cos^2 C/2= 2(1+sin A/2. sin B/2. sin C/2)?
Answers
Answered by
0
Answer:
A+B+C=π
provethat:
cos
2
A+cos
2
B−cos
2
C=1−sinA.sinB.cosC
cos
2
A+sin
2
C−sin
2
B
1−sinA+sinA.cos(C−B)
1−sinA[−sin(C−B)+sinA]
1−sinA[−sin(B+C)+sin(B−C)]
1−sinA2sinBcosC
=1−2sinAsinBcosC
Hence,
proved
Similar questions