Math, asked by riyay, 3 months ago

trigonometry question​

Attachments:

riyay: please someone amswer... it's urgent
riyay: answer*

Answers

Answered by darksoul3
24

\huge \fbox \red{Answer}

Given,

 \tan(θ)  =  \frac{1}{ \sqrt{2} }

By using identity, [ Sec²θ - tan²θ = 1 ]

 \sec(θ)  =  \sqrt{1 +   {\tan}^{2} (θ) }

 =  \sqrt{1 +  {( \frac{1}{ \sqrt{2} }) }^{ {2} } }

 =  \sqrt{1 +  \frac{1}{2} }

 =  \sqrt{ \frac{3}{2} }

Also,

 \cot(θ)  =  \frac{1}{ \tan(θ) }

 =  \frac{1}{ \frac{1}{ \sqrt{2} } }

 =  \sqrt{2}

By using identity,

 \cosec(θ)  = \sqrt{1 +  {cot}^{2}θ}

 =  \sqrt{1 + 2}

 =  \sqrt{3}

Substituting the value, we get

  \frac{  {cosec}^{2}θ-   {sec}^{2} θ  }{ {cosec}^{2}θ -  {cot}^{2}θ}

 \frac{ { (\sqrt{3}) }^{2}  -   {( \frac{ \sqrt{3} }{2}) }^{2}  }{( { \sqrt{3}) }^{2} +  {( \sqrt{2}) }^{2}  }

 \frac{3 -  \frac{3}{2} }{3 + 2}

 \frac{ \frac{3}{2} }{5}

 \frac{3}{10}

Hence, value of

 \frac{ {cosec}^{2}θ -  {sec}^{2}θ}{ {cosec}^{2}θ +  {cot}^{2}θ}  =  \frac{3}{5}

Similar questions