Math, asked by harshitakhurana, 6 months ago

trigonometry

rationalise this​

Attachments:

Answers

Answered by Flaunt
19

\huge\tt{\bold{\underline{\underline{Question᎓}}}}

\huge\tt{\bold{\underline{\underline{Answer᎓}}}}

┏━━━━━━━━━━━━━━━━━━━━━━━┓

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ✍️

 \bold{=  >  \frac{(CosA - SinA )+ 1}{(CosA + SinA )- 1}  \times  \frac{(CosA + SinA) + 1}{(CosA + SinA) + 1} }

Here ,this identity is used:

\bold{\boxed{\boxed{(x+y)(x-y)={x}^2-{y}^2}}}

 \bold{=  >  \frac{ {Cos}^{2}A -  {Sin}^{2} A +  {1}^{2}  }{ {(CosA+ SinA)}^{2}  -  {(1)}^{2} }}

 \bold{=  >  \frac{ - ( {Sin}^{2}A +  {Cos}^{2}A -  {1}^{2}  ) }{ {(SinA+ CosA)}^{2} -  {1}^{2}  }}

 \bold{\red{\boxed{∵ {Sin}^{2} A +  {Cos}^{2} A= 1}}}

 \bold{=  >  \frac{ - (1 - 1)}{ {Sin}^{2}A +  {Cos}^{2} A+ 2SinACosA - 1} }

 \bold{=  >  \frac{ - 0}{1 + 2SinACosA- 1}  =  \frac{0}{1 - 2SinACosA - 1}}

\bold{ =  \frac{0}{ - 2SinACosA}  = 0}

┗━━━━━━━━━━━━━━━━━━━━━━━┛

Similar questions