Math, asked by MisterIncredible, 4 months ago

Trigonometry !…
\sf{ If \ \pi \leq \theta \leq \dfrac{3 \pi}{2} , \ then }\\ \sf{ \sqrt{ \frac{1 + cos \:  \theta}{1 - cos \:  \theta} +  \sqrt{ \frac{1 - cos  \: \theta}{1 + cos \:  \theta} }  }  \: is \: equal \: to \:  : } \\  \\ \sf{ a) 2 \: cosec \:  \theta}  \\  \sf{b) - 2 \: cosec \:  \theta}\\  \sf{ c)2 \: sec \: \theta} \\  \sf{d) -  \: sec \:  \theta}

Answers

Answered by Anonymous
18

Given :

Correct question \sf\sqrt{\dfrac{1+cos\theta}{1-cos\theta}}+\sqrt{\dfrac{1-cos\theta}{1+cos\theta}}

a) 2 cosec θ

b) -2 cosec θ

c) 2 sec θ

d) - sec θ

According to the question :

Solving :

\sf\sqrt{\dfrac{1+cos\:\theta}{1-cos\:\theta}}+\sqrt{\dfrac{1-cos\:\theta}{1+cos\:\theta}}

Now Rationalise the denominator,

\sf\sqrt{\dfrac{1+cos\:\theta}{1-cos\:\theta}\times\dfrac{1+cos\:\theta}{1+cos\:\theta}}+\sqrt{\dfrac{1-cos\:\theta}{1+cos\:\theta}\times\dfrac{1-cos\:\theta}{1-cos\:\theta}}

Then ,

\sf\sqrt{\dfrac{(1+cos\:\theta)^2}{1-cos^2\:\theta}}+\sqrt{\dfrac{(1-cos\:\theta)^2}{1-cos^2\:\theta}}</p><p>

\sf\sqrt{\dfrac{(1+cos\:\theta)^2}{sin^2\:\theta}}+\sqrt{\dfrac{(1-cos\:\theta)^2}{sin^2\:\theta}}

\sf\dfrac{1+cos\:\theta}{sin\:\theta}+\dfrac{1-cos\:\theta}{sin\:\theta}

Now take LCM then ,

\sf\dfrac{1+cos\:\theta+1-cos\:\theta}{sin\:\theta}

\sf\dfrac{2}{sin\:\theta} \sf=2\csc\theta

So It's Done !!


MisterIncredible: Thank you ❤️
Answered by tennetiraj86
12

Answer:

answer for the given problem is given

Attachments:

MisterIncredible: Thank you ❤️
Similar questions