Math, asked by shiva1512, 10 months ago

TRY THIS
(i) Find a quadratic polynomial with zeroes -2 and -1/3.
(ii) What is the quadratic polynomial whose sum of the zeroes is -3/2.:and the product
of the zeroes is -1.​

Answers

Answered by venkatavineela3
6

Answer:

Step-by-step explanation:

1. the zeros of the polynomial are -2,-1/3

(x-2)(x-1/3)

x^2-x/3-2x+2/3

3x^2-x-6x+6=0

3x^2-7x+6=0

2. sum of xeros is -3/2

product of zeros is -1

let the polynomial be k(x^2-(sum of zeros)x+product of zeros)

k(x^2-(-3/2)x+(-1))

k(2x^2+3x-2)

2x^2+3x-2 is our required polynomia;

Answered by Delta13
3

i) Given:

  • Zeroes of the polynomial are -2 and -1/3

To find:

  • The polynomial

Solution:

Let the zeroes be a and b

 \texttt{Sum of zeroes} = a + b\\  =  >   - 2 + ( -  \frac{1}{3} ) \\  \\  = >   - 2 -  \frac{1}{3}  \\  \\  =  >  \frac{ - 6 - 1}{3}  =  \frac{ - 7}{ \: 3}  \\  \\ and \\ \texttt{ Product of zeroes} = ab \\  =  >  - 2 \times ( -  \frac{1}{3} ) \\  \\  =  >  \frac{2}{3}

Required polynomial =

  \blue{{ {x}^{2}   - ( {a + b})x + ( { ab})}}

Putting values

k is constant value here

k \left( {x}^{2}  -  (\frac{ - 7}{ \: 3} )x +  \frac{2}{3}  \right) \\   \\  \rightarrow \: k \left( {x}^{2}  +  \frac{7}{3} x +  \frac{2}{3} \right) \\  \\  \rightarrow \: k \left(  \frac{ {3x}^{2} + 7x + 2 }{3}  \right) \\  \\  \implies \:  \frac{k}{3} \left(  {3x}^{2} + 7x + 2 \right)

Hence, the Required polynomial is

 \green{ {3x}^{2} + 7x + 2 }

Another method is by making factors

so,

x = -2 and x = -1/3

[x-(-2) ] and [x-(-1/3)]

=> (x+2) and (x+1/3)

=> (x+2)(x+\frac{1}{3}) =0 \\ \\

=> x(x+\frac{1}{3}) +2(x +\frac{1}{3}) =0\\ \\

=> {x}^{2}+ \frac{x}{3 }+2x + \frac{2}{3} =0\\ \\

=>\frac{{3x}^2 +x +6x +2 }{3 }=0\\ \\

 =>\green{ {3x}^{2} + 7x + 2 }

__________________________

ii) Given:

  • Sum of zeroes = -3/2
  • Product of zeroes = -1

To find:

  • The polynomial

Solution:

We know that

Polynomial is given by

 {x}^{2}   - ( Sum  \: of \:  zeroes)x +  (Product  \: of  \: zeroes)

K is just any constant

So,

The required polynomial =

 {x}^{2}  - ( -  \frac{3}{2} ) x+ ( - 1) \\  \\  \implies \: k  \left({x}^{2}  +  \frac{3}{2} x - 1 \right) \\  \\  \implies \: k \left (   \frac{ {2x}^{2} + 3x - 2 }{2} \right) \\  \\  \implies  \frac{k}{2} \left ( {2x}^{2}  + 3x - 2\right)

Hence, the Required polynomial is

 \green{ {2x}^{2}  + 3x - 2}

Similar questions