Math, asked by YashrajDeshmukh77, 11 months ago

TRY THIS


If sin 0 + cosec 0 = 2 then the value of sin^8 0 + cosec^8 is equal to-​

Answers

Answered by yash1860
3

Answer:

sin8theta+cosec8theta=2

Step-by-step explanation:

sin theta +1/sin theta = 2

sin square theta + 1= 2 sin theta

(taking lcm)

sin square theta- 2sin theta +1=0

(sin theta - 1) whole square =0

sin theta - 1 =0

so

sin theta=1

and

theta=90°

sin power 8(90°)=1

cosec power 8(90°)=1

so,sin power 8 + cosec power 8=

1+1

=2

PLEASE MARK IT AS BRAINLIEST IF U FEEL U HAVE REALLY GOT IT

Answered by SANDHIVA1974
2

Answer:

Option (A) 2 is the correct answer.

Explanation:

{\boxed{\boxed{\begin{array}{cc}\bf \: \to \:Given : \\  \\  \rm \: sin \theta + cosec\theta = 2 \\  \\  \blue{ \underline{  \pink{\text{We  \: have \: to \: find : }}}} \\  \\  \sf \: The  \: value \: of \:  \boxed{ \rm \: (sin {}^{8}   \theta+ cosec {}^{8}\theta )}\end{array}}}}

{\boxed{\boxed{\begin{array}{cc}\red{ \underline{ \rm{ \: Solution\:    -  {1}^{st} \: step }}} \\  \\  \rm \: sin\theta + cosec\theta = 2 \\  \\  \rm \:   \implies \:sin\theta +  \frac{1}{sin\theta} = 2 \\  \\  \rm \:   \implies \: \frac{sin {}^{2} \theta + 1}{sin\theta}  = 2 \\  \\  \rm \:   \implies \:sin {}^{2} \theta + 1 = 2 \: sin\theta \\  \\  \rm \:   \implies \:sin {}^{2} \theta - 2 \: sin\theta + 1 = 0 \\  \\ \orange{{\boxed{\begin{array}{cc}\bf \: \to  \: we \: know \: that : \\  \\ ( {x - y)}^{2} =  {x}^{2}   - 2xy+  {y}^{2}  \end{array}}}}  \\   \sf \: apply \: this \\  \\  \rm \:   \implies \:( {sin\theta - 1)}^{2} =  0 \\  \\  \rm \:   \implies \:sin\theta - 1 = 0 \\  \\  \rm \:   \implies \:sin\theta = 1 \\  \\   \pink{\therefore \:  \rm \: sin\theta \:  = 1 \:  \:  \:  -  -  - (1)}\end{array}}}}

{\boxed{\boxed{\begin{array}{cc}\red{ \underline{ \rm \: Solution -  {2}^{nd}  \: step}} \\  \\  \bf \: now \:  \\  \\  \rm \:  {sin}^{8}\theta +  {cosec}^{8} \theta \\  \\   \rm=  {sin}^{8} \theta  +  \frac{1}{ \rm {sin}^{8}\theta } \\  \\   \rm =  {(sin\theta)}^{8}  +  \frac{1}{ {(sin\theta)}^{8} }  \\  \\  = 1 {}^{8}  +  \frac{1}{1 {}^{8} }   \:  \:  \:  \pink{ \{ \sf \: by \: eqn.(1) \}} \\  \\  = 1 + 1 \\  \\  = 2 \\  \\   \orange { \boxed{\therefore \rm \:  {sin}^{8}\theta +  {cosec}^{8}\theta = 2}}  \end{array}}}}

Short rule:

If sin x + cosec x = 2

Then, sinⁿ x + cosecⁿ x = 2

Similar questions