Physics, asked by rashidha1714, 10 months ago

Try this question many didn't get the ans..ans is opt3 explain how

Attachments:

Answers

Answered by shadowsabers03
6

Given that the particle is moving under constant power.

We know power \sf{c} is the product of force acting on it and its velocity.

\longrightarrow\sf{c=Fv}

\longrightarrow\sf{F=\dfrac{c}{v}}

We know that \sf{F=ma.} Then,

\longrightarrow\sf{ma=\dfrac{c}{v}}

\longrightarrow\sf{a=\dfrac{c}{mv}}

Acceleration is the first derivative of velocity wrt time.

\longrightarrow\sf{\dfrac{dv}{dt}=\dfrac{c}{mv}}

\longrightarrow\sf{v\ dv=\dfrac{c}{m}\ dt}

\displaystyle\longrightarrow\sf{\int v\ dv=\int \dfrac{c}{m}\ dt}

Since P and m are constant wrt time,

\displaystyle\longrightarrow\sf{\dfrac{v^2}{2}=\dfrac{ct}{m}}

\displaystyle\longrightarrow\sf{v=\left[\dfrac{2ct}{m}\right]^{\frac{1}{2}}}

Well, velocity is the first derivative of displacement wrt time.

\displaystyle\longrightarrow\sf{\dfrac{dx}{dt}=\left[\dfrac{2ct}{m}\right]^{\frac{1}{2}}}

\displaystyle\longrightarrow\sf{dx=\left[\dfrac{2ct}{m}\right]^{\frac{1}{2}}\ dt}

\displaystyle\longrightarrow\sf{x=\int\left[\dfrac{2ct}{m}\right]^{\frac{1}{2}}\ dt}

\displaystyle\longrightarrow\sf{x=\sqrt{\dfrac{2c}{m}}\int t^{\frac{1}{2}}\ dt}

Since \displaystyle\sf{\int x^n\ dx=\dfrac{x^{n+1}}{n+1},\ n\neq-1,}

\displaystyle\longrightarrow\sf{x=\sqrt{\dfrac{2c}{m}}\cdot\dfrac{t^{\frac{3}{2}}}{\left(\dfrac{3}{2}\right)}}

\displaystyle\longrightarrow\sf{x=\sqrt{\dfrac{2c}{m}}\cdot\dfrac{2t^{\frac{3}{2}}}{3}}

\displaystyle\longrightarrow\sf{x=\dfrac{2}{3}\sqrt{\dfrac{2\cdot3c}{3m}}\,t^{\frac{3}{2}}}

\displaystyle\longrightarrow\sf{x=\dfrac{2}{3}\sqrt{\dfrac{2}{3}}\cdot\sqrt{\dfrac{3c}{m}}\,t^{\frac{3}{2}}}

\displaystyle\longrightarrow\sf{x=\left(\dfrac{2}{3}\right)^{1+\frac{1}{2}}\left(\dfrac{3c}{m}\right)^{\frac{1}{2}}\,t^{\frac{3}{2}}}

\displaystyle\longrightarrow\sf{x=\left(\dfrac{2}{3}\right)^{\frac{3}{2}}\left(\dfrac{3c}{m}\right)^{\frac{1}{3}\cdot\frac{3}{2}}\,t^{\frac{3}{2}}}

\displaystyle\longrightarrow\sf{\underline{\underline{x=\left[\dfrac{2}{3}\left(\dfrac{3c}{m}\right)^{\frac{1}{3}}\,t\right]^{\frac{3}{2}}}}}

Hence 3rd option is the answer.

Similar questions