Math, asked by monjyotiboro, 2 months ago

Try this ⚠:

/bold{! }

Attachments:

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that ,

In triangle ABC,

\rm :\longmapsto\:\dfrac{ {sin}^{2}A +  {sin}^{2}B +  {sin}^{2}C}{ {cos}^{2}A +  {cos}^{2}B +  {cos}^{2}C} = 2

We know,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{\:  {sin}^{2}x +  {cos}^{2}x = 1 \bigg \}}

Using this identity, in numerator we get

\rm :\longmapsto\:\dfrac{ 1 - {cos}^{2}A +1 - {cos}^{2}B + 1 - {cos}^{2}C}{ {cos}^{2}A +  {cos}^{2}B +  {cos}^{2}C} = 2

\rm :\longmapsto\:\dfrac{ 3 - {cos}^{2}A- {cos}^{2}B- {cos}^{2}C}{ {cos}^{2}A +  {cos}^{2}B +  {cos}^{2}C} = 2

\rm :\longmapsto\:3 - ( {cos}^{2}A +  {cos}^{2}B +  {cos}^{2}C) = 2({cos}^{2}A +  {cos}^{2}B +  {cos}^{2}C)

\rm :\longmapsto\:3 = 3({cos}^{2}A +  {cos}^{2}B +  {cos}^{2}C)

\rm :\longmapsto\:{cos}^{2}A +  {cos}^{2}B +  {cos}^{2}C = 1

\rm :\longmapsto\:{cos}^{2}A +  {cos}^{2}B  = 1 -  {cos}^{2}C

\rm :\longmapsto\:{cos}^{2}A +  {cos}^{2}B  = {sin}^{2}C

\rm :\longmapsto\:{cos}^{2}A +  {cos}^{2}B - {sin}^{2}C = 0

\rm :\longmapsto\:{cos}^{2}A + cos(B + C)cos(B - C) = 0

\red{\bigg \{ \because \: {cos}^{2}x -  {sin}^{2}y = cos(x + y)cos(x - y)   \bigg \}}

\rm :\longmapsto\:{cos}^{2}A + cos(\pi - A)cos(B - C) = 0

\red{\bigg \{ \because \: A + B + C = \pi\bigg \}}

\rm :\longmapsto\:{cos}^{2}A  -  cos(A)cos(B - C) = 0

\red{\bigg \{ \because \: cos(\pi - x) =  - cosx\bigg \}}

\rm :\longmapsto\:cosA{\bigg(cosA - cos(B - C) \bigg) } = 0

\rm :\implies\:cosA = 0 \:  \:  \: or \:  \:  \: cosA = cos(B - C)

Case :- 1

\rm :\longmapsto\:cosA = 0

\bf\implies \:A = \dfrac{\pi}{2}

\bf\implies \: \triangle \: is \: right \: angled

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf{ \: Option \: (a) \: is \: correct}}}

Case :- 2

\rm :\longmapsto\:cosA = cos(B - C)

\rm :\longmapsto\:A = B - C

\rm :\longmapsto\:B  + B= B + C + A

\rm :\longmapsto\:2B= \pi

\bf\implies \:B = \dfrac{\pi}{2}

\bf\implies \: \triangle \: is \: right \: angled

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf{ \: Option \: (a) \: is \: correct}}}

Similar questions