Try to solve this integral,
Correct answer would be appreciable and will be rewarded as brainliest.
Incorrect, spam or copied answer will be reported on the spot.
Answers
Step-by-step explanation:
Now, we can write is as ,
\begin{gathered} \longrightarrow \sf{\quad { \dfrac{30}{6} + \dfrac{12\sqrt{6} }{6} }} \\ \end{gathered}
⟶
6
30
+
6
12
6
Performing division.
\begin{gathered} \longrightarrow \quad \underline{\boxed{\sf { 5 + 2\sqrt{6} }}} \\ \end{gathered}
⟶
5+2
6
Now, according to the question,
\begin{gathered} \longrightarrow \sf{\quad { \dfrac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}} + \dfrac{3\sqrt{2}+2\sqrt{3}}{3\sqrt{2}-2\sqrt{3}} }} \\ \end{gathered}
⟶
3
2
+2
3
3
2
−2
3
+
3
2
−2
3
3
2
+2
3
Substitute the rationalised form of these two terms.
\begin{gathered} \longrightarrow \sf{\quad {(5 -2\sqrt{6} ) + (5 + 2\sqrt{6} ) }} \\ \end{gathered}
⟶(5−2
6
)+(5+2
6
)
Removing the brackets.
\begin{gathered} \longrightarrow \sf{\quad {5 -2\sqrt{6} + 5 + 2\sqrt{6} }} \\ \end{gathered}
⟶5−2
6
Performing addition and subtraction.
\begin{gathered} \longrightarrow \quad\underline{\boxed { \pmb{\mathfrak{10}} }} \\ \end{gathered}
⟶
10
10
Therefore, the required answer