Math, asked by warriors14, 1 month ago

Try Yourself 1) Evaluate the following limits (x + 1)4 - 24 lim x-1(2x + 1,5 - 35

Attachments:

Answers

Answered by senboni123456
11

Step-by-step explanation:

We have,

 \lim_{x \rarr1} \frac{(x + 1) ^{4} -  {2}^{4}  }{(2x + 1)^{5}  - 3^{5} }  \\

  = \lim_{x \rarr1} \frac{(x + 1) ^{4} -  {2}^{4}  }{(2x + 1)^{5}  - 3^{5} }. \frac{x - 1}{x - 1}   \\

  = \lim_{x \rarr1} \frac{(x + 1) ^{4} -  {2}^{4}  }{x - 1 }. \frac{x - 1}{(2x + 1)^{5}  -  {3}^{5} }   \\

  = \lim_{x \rarr1} \frac{(x + 1) ^{4} -  {2}^{4}  }{(x + 1) - 2 }. \frac{1}{2}  \lim_{x \rarr1}  \frac{2x - 2}{(2x + 1)^{5}  -  {3}^{5} }   \\

  = \lim_{x \rarr1} \frac{(x + 1) ^{4} -  {2}^{4}  }{(x + 1) - 2 }. \frac{1}{2}  \lim_{x \rarr1}  \frac{(2x   + 1) - 3}{(2x + 1)^{5}  -  {3}^{5} }   \\

  = \lim_{x \rarr1} \frac{(x + 1) ^{4} -  {2}^{4}  }{(x + 1) - 2 }. \frac{1}{2}    \frac{1}{ \lim_{x \rarr1}   \dfrac{(2x + 1)^{5}  -  {3}^{5}}{ (2x   + 1) - 3} }   \\

  =  (4 .{2}^{3}  ). \frac{1}{2}  .  \frac{1}{5  .{3}^{4} }   \\

  =    \frac{4 \times 8}{5   \times {3}^{4} \times 2 }   \\

  =    \frac{16}{5   \times {3}^{4} }   \\

  =    \frac{16}{5   \times 81 }   \\

  =    \frac{16}{405 }   \\

Answered by Conformist2004
1

Answer:16/405

Step-by-step explanation:

Using L'Hospital's rule:

Step 1: differentiate first.

Step 2: after differentiation put the value of the limit and here comes your answer.

Similar questions