Math, asked by ramyasrighakollapu, 8 months ago

tsquare÷3×tcube=?????? ​

Answers

Answered by ArunaPraadeep
2

Step-by-step explanation:

=> t² – 4t + 1 =0

=> t² + 1 = 4t

=> ( t² + 1 ) ÷ t = 4

\begin{gathered}= > \frac{ {t}^{2} }{t} + \frac{1}{t} = 4 \\ \\ = > t + \frac{1}{t} = 4\end{gathered}

=>

t

t

2

+

t

1

=4

=>t+

t

1

=4

Now, Cubing on both sides,

\begin{gathered}= > {(t + \frac{1}{t}) }^{3} = {4 }^{3} \\ \\ \\ = > {t}^{3} + \frac{1}{t ^{3} } + 3(t + \frac{1}{t} )(t \times \frac{1}{t} ) = 64 \\ \\ \\ = > {t}^{3} + \frac{1}{ {t}^{3} } + 3(4)(1) = 64 \\ \\ \\ = > {t}^{3} + \frac{1}{ {t}^{3} } = 64 - 12 \\ \\ \\ = > {t}^{3} + \frac{1}{ {t}^{3} } = 52\end{gathered}

=>(t+

t

1

)

3

=4

3

=>t

3

+

t

3

1

+3(t+

t

1

)(t×

t

1

)=64

=>t

3

+

t

3

1

+3(4)(1)=64

=>t

3

+

t

3

1

=64−12

=>t

3

+

t

3

1

=52

Answered by snehashrivastava23
0

Answer:

 {t \:  }^{2}  \div 3t {}^{3 }  \\  = (1 \div 3) {t}^{2 - 3}  \\ = (1  \div 3) {t}^{ - 1}

Similar questions