TT
If a + B =π/4 , prove that (1 + tan a) (1 + tan B) = 2.
Answers
Answered by
11
Step-by-step explanation:
Given,
A+B = π/4
taking tangent both the sides, we get
tan(A+B) = tan(π/4)
or,( tanA+tanB)/(1-tanA. tanB) = 1 {Since, tan(A+B)=( tanA+tanB)/(1-tanA. tanB) and tan(π/4)=1}
or, tanA+tanB = 1-tanA. tanB
or, tanA+tanB+tanA. tanB = 1
Now, adding 1 both sides,
or, tanA+tanB+tanA.tanB+1 = 2
or, tanA+1 + tanB+tanA.tanB = 2
or, 1(tanA+1) + tanB(1+tanA) = 2
or, (tanA+1)(1+tanB) = 2
or, (1+tanA)(1+tanB) = 2
Hence Proved
Please mark as Brainlist
Please fallow me !
Similar questions