Math, asked by vishnukathole66, 2 months ago

TT
X. (5) If sin-' (1-x) - 2 sin ' x =
then find the value of x
2​

Answers

Answered by mathdude500
4

\large\underline{\sf{Correct \:  Question- }}

 \sf \: If  \:  {sin}^{ - 1} (1 - x) - 2 {sin}^{ - 1} x = \dfrac{\pi}{2}  \: then \: find \: value \: of \: x

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:{sin}^{ - 1} (1 - x) - 2 {sin}^{ - 1} x = \dfrac{\pi}{2}

\rm :\longmapsto\:{sin}^{ - 1} (1 - x)  = \dfrac{\pi}{2} +  {2sin}^{ - 1} x

\rm :\longmapsto\:1 - x = sin\bigg(\dfrac{\pi}{2}   + 2 {sin}^{ - 1}x \bigg)

\rm :\longmapsto\:1 - x = cos( {2sin}^{ - 1} x) \:  \:  \:  \:  \{ \because \: sin\bigg( \dfrac{\pi}{2} + x \bigg)  = cosx \}

\rm :\longmapsto\:1 - x = cos\bigg( {cos}^{ - 1}(1 -  {2x}^{2})   \bigg)  \:  \{ \because \:  {2sin}^{ - 1} x =  {cos}^{ - 1} (1 -  {2x}^{2}  \}

\rm :\longmapsto\: \cancel1 - x =  \cancel1 -  {2x}^{2}  \:  \:  \:  \:  \:  \:  \{ \because \:  {cos}^{ - 1} (cosx) = x \}

\rm :\longmapsto\: {2x}^{2}  - x = 0

\rm :\longmapsto\:x(2x - 1) = 0

\bf\implies \:x \:  = 0 \:  \:  \: or \:  \:  \: x  = \dfrac{1}{2}

\large\underline{\sf{Verification- }}

Case :- 1

 \sf \: when \: x  \: =  \: 0

\rm :\longmapsto\:{sin}^{ - 1} (1 - 0) - 2 {sin}^{ - 1} 0 = \dfrac{\pi}{2}

\rm :\longmapsto\:{sin}^{ - 1} (1) -0 = \dfrac{\pi}{2}

\rm :\longmapsto\:\dfrac{\pi}{2} =  \dfrac{\pi}{2}

\bf\implies \:x \:  =  \: 0 \: is \: solution

Case :- 2

 \sf \: when \: x \:  =  \: \dfrac{1}{2}

\rm :\longmapsto\:{sin}^{ - 1} (1 - \dfrac{1}{2}) - 2 {sin}^{ - 1} \dfrac{1}{2}= \dfrac{\pi}{2}

\rm :\longmapsto\:{sin}^{ - 1} \dfrac{1}{2} - 2 {sin}^{ - 1} \dfrac{1}{2} = \dfrac{\pi}{2}

\rm :\longmapsto\: -  \:  {sin}^{ - } \dfrac{1}{2} = \dfrac{\pi}{2}

\rm :\longmapsto\: -  \: \dfrac{\pi}{6} = \dfrac{\pi}{2}

 \sf \: which \: is \: absurd

\bf\implies \:x \:  \ne \: \dfrac{1}{2}

So,

  \boxed{ \bf{ \: x \:  =  \: 0 \: is \: solution \: of \: {sin}^{ - 1} (1 - x) - 2 {sin}^{ - 1} x = \dfrac{\pi}{2}}}

Additional Information :-

 \boxed{ \bf{ \:  {sin}^{ - 1} x +  {cos}^{ - 1} x = \dfrac{\pi}{2} }}

 \boxed{ \bf{ \:  {sec}^{ - 1} x +  {cosec}^{ - 1} x = \dfrac{\pi}{2} }}

 \boxed{ \bf{ \:  {tan}^{ - 1} x +  {cot}^{ - 1} x = \dfrac{\pi}{2} }}

 \boxed{ \bf{ \:  {sin}^{ - 1} (sinx) = x}}

 \boxed{ \bf{ \:  {tan}^{ - 1} (tanx) = x}}

 \boxed{ \bf{ \:  {sin}^{ - 1} ( - x) = -  {sin}^{ - 1}  x}}

 \boxed{ \bf{ \:  {cos}^{ - 1} ( - x) =\pi \:  -  {cos}^{ - 1}  x}}

 \boxed{ \bf{ \:  {tan}^{ - 1} ( - x) =  -  \:  {tan}^{ - 1} x}}

 \boxed{ \bf{ \:  {2tan}^{ - 1} x =  {sin}^{ - 1} \bigg(\dfrac{2x}{1  +  {x}^{2} }  \bigg) }}

 \boxed{ \bf{ \:  {2tan}^{ - 1} x =  {tan}^{ - 1} \bigg(\dfrac{2x}{1 -  {x}^{2} }  \bigg) }}

 \boxed{ \bf{ \:  {2tan}^{ - 1} x =  {cos}^{ - 1} \bigg(\dfrac{ {1 - x}^{2} }{1  +  {x}^{2} }  \bigg) }}

 \boxed{ \bf{ \: 2 {sin}^{ - 1} x =  {sin}^{ - 1} 2x \sqrt{1 -  {x}^{2} }  =  {cos}^{ - 1} (1 -  {2x}^{2} )}}

 \boxed{ \bf{ \: 2 {cos}^{ - 1} x =  {sin}^{ - 1} 2x \sqrt{1 -  {x}^{2} }  =  {cos}^{ - 1} ({2x}^{2} - 1 )}}

Similar questions