TTL 7. dleL ABCDHL AB = 9 l, BC = 40 4 CD = 28 Al, DA = 15 AAl >i ZB = 90°
Answers
Answer:
306m
Step-by-step explanation:
Step-by-step explanation:
In quad. ABCD,
AB = 9m, BC = 40m, CD= 28m, AD = 15m
\angle ABC∠ABC = 90 °
Now in ABC,
AC^2 = AB^2 + BC^2AC
2
=AB
2
+BC
2
= (9)^2 + (40)^2(9)
2
+(40)
2
= 81 + 1600
= 1681
AC = \sqrt 1681
1
681 = 41 m
∴Area of quad.ABCD = Area of ΔABC+Area of ΔACD
Ar(ABC) = \frac {1}{2} \times base \times altitude
2
1
×base×altitude (Refer Figure)
= \frac {1}{2} \times 9 \times 40
2
1
×9×40
= 180 m^2m
2
""(1)
Ar(ACD) = Applying Heron's Formula
Semiperimeter, s = \frac {a+b+c}{2}
2
a+b+c
= \frac {15+28+41}{2}
2
15+28+41
(Side are 15m, 28m, 41 m)
= 42 m
Area = \sqrt {s(s-a)(s-b)(s-c)}
s(s−a)(s−b)(s−c)
= \sqrt {42(42-15)(42-28)(42-41)}
42(42−15)(42−28)(42−41)
= \sqrt {42 \times 27 \times 14 \times 1}
42×27×14×1
= 126 m^2m
2
"""(2)
As Area of quad.ABCD = Area of ΔABC+Area of ΔACD
= 180 + 126 (From (1) & (2))
Answer:
I don't know the answer maybe someone can answer this
Step-by-step explanation:
:)))))