Physics, asked by kedarw2332, 10 months ago

Twenty seven droplets of water, each

of radius 0.1 mm coalesce into a single

drop. Find the change in surface energy.

Surface tension of water is 0.072 N/m.​

Answers

Answered by shadowsabers03
86

The radius of each water droplet \sf{=0.1\ mm=0.1\times10^{-3}\ m.}

Let the radius of the new single drop be R.

Even after coalescing, the volume of the 27 water droplets remain unchanged. Thus,

\longrightarrow\sf{27\times\dfrac{4}{3}\,\pi\left(0.1\times10^{-3}\right)^3=\dfrac{4}{3}\,\pi R^3}

\longrightarrow\sf{R^3=27\left(0.1\times10^{-3}\right)^3\ m^3}

\longrightarrow\sf{R=3\times0.1\times10^{-3}\ m}

\longrightarrow\sf{R=0.3\times10^{-3}\ m}

The relation between surface tension and surface energy is,

\longrightarrow\sf{Surface\ Energy=Surface\ Tension\times Surface\ Area}

Since the drop is assumed to be spherical, surface energy,

\longrightarrow\sf{W=4\pi\sigma r^2}

where \sf{\sigma=0.072\ N\,m^{-1}} is surface tension and r is the radius of the drop.

Total surface energy of the 27 water droplets is,

\longrightarrow\sf{W_1=27\times0.072\times4\pi\left(0.1\times10^{-3}\right)^2}

\longrightarrow\sf{W_1=2.44\times10^{-7}\ J}

Surface energy of the single drop formed after coalescing is,

\longrightarrow\sf{W_2=0.072\times4\pi\left(0.3\times10^{-3}\right)^2}

\longrightarrow\sf{W_2=0.81\times10^{-7}\ J}

Hence the change in surface energy is,

\longrightarrow\sf{\Delta W=W_1-W_2}

\longrightarrow\sf{\Delta W=2.44\times10^{-7}\ J-0.81\times10^{-7}\ J}

\longrightarrow\underline{\underline{\sf{\Delta W=1.63\times10^{-7}\ J}}}

Similar questions