Math, asked by kdugan2025, 4 months ago

Twice a number added to a smaller number is 5. The difference of 5 times the smaller number and the larger number is 3. Let x represent the smaller number and y represent the larger number. Which equations represent the situation?

Answers

Answered by mathdude500
9

\begin{gathered}\begin{gathered}\bf Let -  \begin{cases} &\sf{x  \: represent \:  the  \: smaller  \: number} \\ &\sf{y \:  represent \:  the \:  larger \:  number} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{Twice \:  a \: larger \:  number \:  added \:  to \:   smaller \:  number \:  is  \: 5.} \\ &\sf{The  \: difference  \: of \:  5 \:  times \:  the \:  smaller  \: number \:  and \:  the \:  larger \:  number \:  is  \: 3.} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf So,  \: equations  \: are  \begin{cases} &\sf{2y + x = 5} \\ &\sf{5x - y = 3} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

Answered by Anonymous
151

  {\colorbox{black} {\colorbox{lime} {\colorbox{green} {\colorbox{blue} {\colorbox{cyan}{Answer:}}}}}}

Let the numbers be "x" and "y"

2y + x = 5

5x - y = 3

y = 5x - 3

2(5x - 3) + x = 5

10x - 6 + x = 5

11x = 11

x = 1

Substituting x=1 in y = 5x - 3

y = 5(1) - 3

y = 2

Similar questions