Math, asked by ramsan6728, 3 months ago

twice one number minus three times a second number is equal to 2 and the sum of those number is 11 find the number

Answers

Answered by shivam2258
1

mark me as brainliest!!!!!

Attachments:
Answered by Anonymous
11

\large\sf\underline{Question:}

Twice one number minus three times a second number is equal to 2 and the sum of those number is 11 . Find the number .

\large\sf\underline{Answer:}

Let the two numbers be {\sf{{\pink{x}}}} and {\sf{{\pink{y}}}} .

According to the question :

\small\rm\purple\star\:\underline{1^{st}\: condition-}

\sf\:3x-2y=2--(i)

\small\rm\purple\star\:\underline{2^{nd}\: condition-}

\sf\:x+y=11--(ii)

Multiplying equation (ii) by 2 :

\sf\:x+y=11

\sf➞\:2(x+y)=11×2

\sf➞\:2x+2y=22--(iii)

Now adding equation (i) and (iii) :

\sf\:3x-2y+(2x+2y)=22+2

\sf➞\:3x-2y+2x+2y=22+2

\sf➞\:3x+2x-2y+2y=22+2

\sf➞\:5x-2y+2y=22+2

\sf➞\:5x-\cancel{2y}+\cancel{2y}=22+2

\sf➞\:5x=24

\sf➞\:x=\frac{24}{5}

Now substituting the value of x in (i) :

\sf➞\:3x-2y=2

\sf➞\:3(\frac{24}{5})-2y=2

\sf➞\:3×\frac{24}{5}-2y=2

\sf➞\:\frac{72}{5}-2y=2

\sf➞\:\frac{72-10y}{5}=2

\sf➞\:72-10y=5×2

\sf➞\:72-10y=10

\sf➞\:-10y=10-72

\sf➞\:-10y=-62

\sf➞\:\cancel{-}10y=\cancel{-}62

\sf➞\:10y=62

\sf➞\:y=\frac{62}{10}

\sf➞\:y=6.2

\large\sf\underline{Verification\:of\:my\:answer:}

Let's substitute the value of x and y in equation (i)

\sf\:3x-2y=2

\sf➻\:3(\frac{24}{5})-2×6.2=2

\sf➻\:3×\frac{24}{5}-2×\frac{62}{10}=2

\sf➻\:\frac{72}{5}-\frac{124}{10}=2

\sf➻\:\frac{144-124}{10}=2

\sf➻\:\frac{20}{10}=2

\sf➻\:\cancel{\dfrac{20}{10}}=2

\sf➻\:2=2

\small{\underline{\boxed{\mathrm\purple{[\:Hence\: Verified\:]}}}}

Similarly we can verify our answer by substituting the value of x and y in equation (ii) .

‎┍━━━━━━━★━━━━━━━┑

⠀‎⠀⠀⠀‎\large\sf\underline{Final\:Answers}

⠀‎⠀⠀⠀{\sf{{\red{➞\:x=\frac{24}{5}}}}}

⠀‎⠀⠀⠀‎{\sf{{\red{➞\:y=6.2}}}}

┕━━━━━━━★━━━━━━━┙

!! Hope it helps !!

Similar questions
English, 10 months ago