Math, asked by saili21, 10 months ago

twn square theta upon sec theta +1 = sec theta - 1 prove this​

Answers

Answered by nirman95
6

The basic way to prove this kind of questions is to match the LHS and RHS of the given equation :

LHS:

 \therefore \dfrac{ { \tan}^{2}( \theta )}{ \sec( \theta) + 1 }

 =  \dfrac{ { \sec}^{2}( \theta) - 1 }{ \sec( \theta)  + 1}

 =  \dfrac{ { \sec}^{2}( \theta) -  {(1)}^{2}  }{ \sec( \theta)  + 1}

 =  \dfrac{  \{\sec( \theta) + 1 \}  \{ \sec( \theta) - 1 \} }{ \{ \sec( \theta)  + 1 \}}

Cancelling similar terms , we get :

 =  \dfrac{   \cancel{\{\sec( \theta) + 1 \}}  \{ \sec( \theta) - 1 \} }{  \cancel{\{ \sec( \theta)  + 1 \}}}

 =  \sec( \theta)  - 1

RHS :

 =  \sec( \theta)  - 1

Hence , LHS = RHS

Basic identities used :

1) \:  {a}^{2}  -  {b}^{2}  = (a + b)(a - b)

2) \:   { \tan}^{2} ( \theta) + 1 =  { \sec}^{2} ( \theta)

Answered by InfiniteSoul
3

\sf{\huge{\mathbb{\pink{\bigstar{\boxed{\boxed{Question}}}}}}}

prove :-

\sf\dfrac{tan^2\theta}{sec\theta + 1 } = sec\theta - 1

\sf{\huge{\mathbb{\pink{\bigstar{\boxed{\boxed{Solution}}}}}}}

\implies\sf\dfrac{tan^2\theta}{sec\theta + 1 } = sec\theta - 1

\sf{\bold{\red{\boxed{sec^2\theta - tan^2\theta = 1 }}}}

\sf{\bold{\red{\boxed{tan^2 \theta = 1 - sec^2\theta}}}}

\implies\sf\dfrac{sec^2\theta - 1^2 }{sec\theta + 1 } = sec\theta - 1

\sf{\bold{\red{\boxed{a^2 - b^2 = (a+ b)(a - b)}}}}

\implies\sf\dfrac{(sec\theta - 1)\cancel{(sec\theta + 1)}}{\cancel{sec\theta + 1 }} = sec\theta - 1

\implies\sf sec\theta - 1 = sec\theta - 1

\sf{\bold{\orange{\boxed{\dag LHS = RHS}}}}

\sf{\bold{\orange{\boxed{\dag Hence\:Proved}}}}

_________________❤

Similar questions