Math, asked by hunargrover07, 3 months ago

Two adjacent angles of parallelogram are (2y+10)° and (3y-40)°. Find the measure of all angles of the parallelogram. Answer:86°,94°​

Answers

Answered by r9955434511
0

Answer:

gg। hg f। h hg। g g hg। g

Step-by-step explanation:

g। g f f ggg g gf d। f f g g f f

Answered by Teluguwala
1

Given :-

  • Two adjacent angles of parallelogram are (2y+10)° and (3y-40)°

To Find :-

  • All angles of the parallelogram

Formula Used :-

In parallelogram,

⟼ \:  \red{ \bf Sum \: of \: adjacent \: angles  \:  =  \: 180 \degree}

⟼ \:  \red{ \bf Sum \: of \: all \: angles  \:  =  \: 360 \degree}

Step-by-step Explanation :

Method -

⟼ \:   \bf Sum \: of \: adjacent \: angles \:  =  \: 180 \degree

 \:  :  \implies \:   \:  \sf  \angle a \:  + \:   \angle b\:  =  \: 180 \degree

 \:  :  \implies \:   \:  \sf  (2y + 10) \:  + \:   (3y - 40)\:  =  \: 180 \degree

\:  :  \implies \:   \:  \sf  5y  - 30\:  =  \: 180 \degree

\:  :  \implies \:   \:  \sf  5y\:  =  \: 180 + 30 \degree

\:  :  \implies \:   \:  \sf  5y \:  =  \: 210 \degree

 \displaystyle\:  :  \implies \:   \:  \sf  y \:  =  \:  \cancel\frac{210}{5}

 \displaystyle\:  :  \implies \:   \:  \bf  y  \:  =  \:  42

Now,

⟼ \:  \:  \sf   \angle a \:  =  \: 2y + 10

 \:  : \implies  \:  \:  \sf   \angle a \:  =  \: 2(42) + 10

 \:  : \implies  \:  \:  \sf   \angle a \:  =  \: 84 + 10

 \:  : \implies  \:  \:  \bf   \angle a \:  =  \: 94 \degree

And also,

⟼ \:  \:  \sf   \angle b  \:  =  \: 3y  - 40

 \:  : \implies  \:  \:  \sf   \angle b\:  =  \: 3(42)  - 40

 \:  : \implies  \:  \:  \sf   \angle b  \:  =  \: 126  - 40

 \:  : \implies  \:  \:  \bf   \angle b \:  =  \: 86  \degree

Hence,

  • ∠a = 94°
  • ∠b = 86°

We also know that,

In parallelogram,

The adjacent angles are equal

So,

  • ∠a & c= 94°
  • ∠b & ∠d = 86°

 \:

Method -

In parallelogram,

The adjacent angles are equal

So,

  • ∠a & ∠c
  • ∠b & ∠d

⟼ \:  \bf Sum \: of \: all \: angles  \:  =  \: 360 \degree

 \:  :   \implies \:  \:  \sf ∠a  + ∠b + ∠c + ∠d \:  =  \: 360 \degree

 \:  :   \implies \:  \:  \sf (2y + 10)  + (3y - 40) + (2y + 10) + (3y - 40) \:  =  \: 360 \degree

 \:  :   \implies \:  \:  \sf 2y + 10  + 3y - 40 + 2y + 10+ 3y - 40 \:  =  \: 360 \degree

 \:  :   \implies \:  \:  \sf 10y +20 - 80  \:  =  \: 360 \degree

\:  :   \implies \:  \:  \sf 10y + (- 60)\:  =  \: 360 \degree

\:  :   \implies \:  \:  \sf 10y - 60\:  =  \: 360 \degree

\:  :   \implies \:  \:  \sf 10y  \:  =  \: 360 + 60 \degree

\:  :   \implies \:  \:  \sf 10y \:  =  \: 420 \degree

 \displaystyle \:  :   \implies \:  \:  \sf y \:  =  \:   \cancel\frac{420 \degree}{10}

 \displaystyle \:  :   \implies \:  \:  \bf y  \:  =  \:   42\degree

Now,

⟼ \:  \:  \sf   \angle a  =  \:\angle c \:  =  \: 2y + 10

 \:  : \implies  \:  \:  \sf   \angle a  =  \angle \: c   \:  =  \: 2(42) + 10

 \:  : \implies  \:  \:  \sf   \angle a  =  \angle \: c  \: _{(Parallelogam)} \:  =  \: 84+ 10

 \:  : \implies  \:  \:  \bf   \angle a  =  \angle \: c  \: _{(Parallelogam)} \:  =  \: 94 \degree

and also,

⟼ \:  \:  \sf   \angle b  =  \angle \: d \:  =  \: 3y  - 40 \:

 \:  : \implies  \:  \:  \sf   \angle b  = \angle d\:  =  \: 3(42)  - 40

 \:  : \implies  \:  \:  \sf   \angle b  =  \angle d \:  =  \:12 6 - 40

 \:  : \implies  \:  \:  \bf   \angle b  =  \angle d \:  =  \:86 \degree

Hence,

  • ∠a & ∠c = 94°
  • ∠b & ∠d = 86°

 \:

Attachments:
Similar questions