Math, asked by StudiousDG8777, 10 months ago

Two adjacent angles of the parallelogram are (3a +10)° and (3a-4)°. Find the value of a? *

Answers

Answered by ButterFliee
9

GIVEN:

  • Two adjacent angles of the parallelogram are (3a +10)° and (3a-4)°

TO FIND:

  • What is the value of a ?

SOLUTION:

We have given that two adjacent angles of the parallelogram are (3a +10)° and (3a-4)°

We know that the sum of adjacent angles is 180°

According to question:-

\rm{\implies (3a + 10) + (3a -4) = 180\degree}

\rm{\implies 6a + 6 = 180\degree}

\rm{\implies 6a = 180-6}

\rm{\implies 6a = 174}

\rm{\implies a = \cancel\dfrac{174}{6}}

\bf{\implies \star \: a = 29 \: \star }

Measure of angles:

\rm{ 3 \times 29 + 10 = 97\degree}

\rm{ 3 \times 29 - 4 = 83\degree}

VERIFICATION:

97 + 83 = 180°

180° = 180°

VERIFIED....

____________________

Answered by sethrollins13
5

✯✯ QUESTION ✯✯

Two adjacent angles of the parallelogram are (3a +10)° and (3a-4)°. Find the value of a?

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

\longrightarrow{1st\:Adjacent\:Angle=(3a+10)}

\longrightarrow{2nd\:Adjacent\:Angle=(3a-4)}

Now ,

Sum of Adjacent Angles of the Parallelogram is 180°..

A.T.Q : -

\longrightarrow{3a+10+3a-4=180}

\longrightarrow{3a+3a+10-4=180}

\longrightarrow{6a+10-4=180}

\longrightarrow{6a+6=180}

\longrightarrow{6a=180-6}

\longrightarrow{a=\cancel\dfrac{174}{6}}

\longrightarrow{\large{\boxed{\bold{\bold{\red{\sf{a=29}}}}}}}

So,The value of a is 29..

So ,

\longrightarrow{1st\:Angle=3(29)+10)}

\longrightarrow{\textbf{97\degree}}

\longrightarrow{2nd\:Angle=3(29)-4}

\longrightarrow{\textbf{83\degree}}

VERIFICATION : -

\longrightarrow{1st\:Angle+2nd\:Angle=180\degree}

\longrightarrow{97\degree+83\degree=180\degree}

\longrightarrow{180\degree=180\degree}

HENCE VERIFIED

Similar questions