Math, asked by bdatwani9, 11 months ago

Two adjacent sides of a parallelogram are in the ratio 4:9 . If the perimeter of the parallelogram is 52cm find the length of its side & area, if the altitude to the shorter side is 12cm

Answers

Answered by Anonymous
4

Let the sides 4x and 9x.

We know,

Perimeter of parallelogram

= 2 x sum of adjacent

ATQ

Perimeter of paralllelogram = 52cm

 = 2(4x + 9x) = 52 \\  = 13x =  \frac{52}{2}  \\  = 13x = 26 \\  = x =  \frac{26}{13}  \\  = x = 2cm

Required Adjacent Side

One side

 = 4x \\ =  4(2) \\  = 8cm

Another side

 = 9x \\  = 9(2) \\  = 18cm

Clearly,

8cm < 18cm

Hence , 18cm is the larger

side or base of the

parallelogram.

Corresponding Altitude = 8cm

Area of parallelogram

 = (base \times area) \: square \: units \\  = (18 \times 8) {cm}^{2}  \\ 144 {cm}^{2}

Hence \:  \ , the \: \:   area  \:  \: of parallelogram  \ \</u><u>=</u><u>of 144 {cm}^{2}

Answered by rishmithakishore
0

Answer:

195cm^{2}

Step-by-step explanation:

Perimeter of trapezium = 52cm

Perimeter = 2*Sum of adjacent sides

           52 = 2*(9x+4x)

           52 = 2*13x

       52/2 = 13x

      26/13 = x

             x = 2

∴ Adjacent sides

         4x=4*2                9x=9*2

             =8cm                   =18cm

(Height of trapezium)^{2} = (hypo)^{2}-(side)^{2}

                                    =(18-8)^{2}-(7)^{2}

                                    =(10^{2} )-(7)^{2}

                                    =\sqrt{100+144}

                                    =\sqrt{244}

                                    =15.62

Area of trapezium = 1/2*h(a+b)

                              = 1/2*15(18+8)

                              = 7.5(26)

                              = 195cm^{2}

Similar questions