Math, asked by BeraPrapti, 5 months ago

Two angles are a linear pair. Their measures are represented by x+10, and 3x+10. What are the measures of the angles? ​

Answers

Answered by kanchantibrewal6
1

Answer:

x+10+3x+10=180

4x+20=180

4x=180-20

4x=160

x=160/4

=4

x+10

4+10=14

3x+10

3×4+10

12+10

=22

Answered by Anonymous
29

Answer:

||☆》Question -:

 ☆ 》Two \; angles \;  are\ a\ linear\ \\ pair.\ Their\ measures\ are\ represented\ \\ by\ x+10,\ and\ 3x+10.\ What\ are\ the\ \\ measures\ of\ the\ angles?\  

||☆》Given -:

 \bullet \quad Two\ Angles\ (X + 10) \\ and\  (3X + 10) are\ linear\ pair\ angles.\}

||☆》To Find -:

 \bullet \quad Measure\ of\ each\ angle.\

||☆》 We know that -:

 \bullet \quad Sum\ of\ linear\ pair\ angles\ = {180}^o

||☆》 Solution -:

 \because \; Sum \; of \; linear \; pair \; angles\; = 180^o \\ \\ \therefore  \; \implies (x+10) + (3x+10) = 180^o. \\ \implies  4x + 20 = 180^o. \\ \implies 4x = 160^o. \\ \implies x = \frac {160^o} {4}. \\ \implies \boxed {x = 40^o.} \\ \\ Hence, \; \bigstar \quad First \; angle = (X + 10) \\ \Rightarrow (40 + 10)^o \\ \Longrightarrow \boxed {50^o} \\ \bigstar \quad Second \; angle = (3X + 10) \\ \Rightarrow (3×40 + 10)^o \\ \Rightarrow (120+10)^o \\ \Longrightarrow  \boxed {130^o}

||☆》Answer

  \bullet \qquad \blue {\boxed {First \; Angle = 50^o.}} \\ \\

 \bullet \qquad \red {\boxed {Second \; Angle = 130^o. }}

Similar questions