Math, asked by Ligature, 1 month ago

Two angles are complementary. One is 10° more than the other . Find the angles.​

Answers

Answered by Okhey
15

Given: Two angles are complementary angles. & one angle is 10° more than the other angle.

Need to find: The angles ?

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

Let's say, that the two angles be x and y respectively.

Given that :

One angle is 10° more than the other angle.

Therefore :

:\implies\sf\quad y = x + 10^\circ\qquad\qquad\qquad\qquad\sf\Bigg\lgroup\ eq^{n}\:(i)\Bigg\rgroup\\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

\underline{\bf{\dag} \:\frak{As\;we\;know\;that\: :}}\\

Two angles said to be complementary angles when they add up to 90°.

:\implies\sf\quad First_{\:(angle)} + Second_{\:(angle)} = 90^\circ\\\\

:\implies\sf\quad x + y = 90^\circ\\\\

:\implies\sf\quad x + x + 10^\circ = 90^\circ\qquad\qquad\qquad\sf\Bigg\lgroup\ From\;eq^{n}\:(i)\Bigg\rgroup\\\\

:\implies\sf\quad 2x + 10^\circ = 90^\circ\\\\

:\implies\sf\quad 2x = 90^\circ - 10^\circ\\\\

:\implies\sf\quad 2x = 80^\circ\\\\

:\implies\sf\quad x = \cancel\dfrac{80^\circ}{2}\\\\

:\implies\quad\underline{\boxed{\pmb{\frak{x = 40^\circ}}}}\\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

\underline{\bf{\dag} \:\:\sf{Now,\;Calculating\;'y'\; Therefore\: :}}\\\\⠀⠀⠀

:\implies\sf\quad x + y = 90^\circ\\\\

:\implies\sf\quad 40^\circ + y = 90^\circ\\\\

:\implies\sf\quad y = 90^\circ - 40^\circ\\\\

:\implies\quad\underline{\boxed{\pmb{\frak{y = 50^\circ}}}}\\\\

\therefore{\underline{\sf{Hence,\;the\;angles\;are\;{\pmb{\sf{50^\circ}}} \;and\; {\pmb{\sf{40^\circ}}} \:respectively.}}}

⠀⠀⠀⠀⠀

Answered by priyasamanta501
4

\tt {\underline{ \underline{ \red{✠Answer:-}}}}

Let the angles be x and (x+10)

By the problem:-

x+x+10=90

 \implies \tt{2x + 1 0= 90}

 \implies \tt{2x = 90 - 10}

 \implies \tt{x =  \cancel \frac{80}{2} }

 \implies \tt{x = 40}

The first angle is:

x= 40°

The second angle is:

x+10 = (40+10)° = 50°

 \therefore \text{The angles are 40° and 50°}.

Similar questions