Math, asked by renysreji6gmailcom, 2 months ago

two angles are in the ratio1:2. on increasing the smaller angle by 6 and decreasing the larger angle by 6, the ratio changed to 2:3. what where the original angle?​

Answers

Answered by suvarnaoswin3
1

Answer:

Step-by-step explanation:

Let the angles bex,2x                                                                                         Then  =x+6/2x-6=2/3                                                                          Then do cross multiplication we get 3x+18=4x-24                                                               Now we get angles are 30 and 60 degrees

Answered by Yugant1913
15

\sf\blue {let \: two \:angles\: be \:X\: and\: 2X}

\sf\blue{In  \: easing  \:  smaller \:  by \:  6°  \: and \:  decreasing \:  the \:  larger } \\  \sf \blue{\:  by  \: 6° \: ,the  \: ration  \:  to \:  2:3} \\

 \tt \orange{⇒\frac{x + 6}{2x + 6}  =  \frac{2}{3}  } \\

 \tt⇒3 \times (x + 6) = 2 \times (2x - 6)

 \tt⇒3x + 18 = 4x - 12

 \tt \: ⇒4x - 3x = 18 + 12

 \tt   \boxed{ ⇒x = 30}

 \huge  \sf\green{Original  \: angle \:  are \:  30° \: and } \\  \tt =  2x \\  \tt = 2 \times 30 \\  \tt  = 60°

 \sf \green {\therefore \:  \:  \:  \: original \: angle \: are \: 30° \: and \: 60°}

Similar questions